Zobrazeno 1 - 10
of 22
pro vyhledávání: '"Bäumler, Johannes"'
Autor:
Bäumler, Johannes
Consider independent long-range percolation on $\mathbb{Z}^d$ for $d\geq 3$. Assuming that the expected degree of the origin is infinite, we show that there exists an $N\in \mathbb{N}$ such that an infinite open cluster remains after deleting all edg
Externí odkaz:
http://arxiv.org/abs/2410.00303
Autor:
Bäumler, Johannes
We show that for long-range percolation with polynomially decaying connection probabilities in dimension $d\geq 2$, the critical value depends continuously on the precise specifications of the model. Among other things, we use this result to show tra
Externí odkaz:
http://arxiv.org/abs/2312.04099
Autor:
Bäumler, Johannes
We study independent long-range percolation on $\mathbb{Z}^d$ where the nearest-neighbor edges are always open and the probability that two vertices $x,y$ with $\|x-y\|>1$ are connected by an edge is proportional to $\frac{\beta}{\|x-y\|^s}$, where $
Externí odkaz:
http://arxiv.org/abs/2311.14352
Autor:
Bäumler, Johannes
Publikováno v:
Electron. J. Probab. 28, 1-24, (2023)
Let $X_1, X_2, \ldots$ be i.i.d. random variables with values in $\mathbb{Z}^d$ satisfying $\mathbb{P} \left(X_1=x\right) = \mathbb{P} \left(X_1=-x\right) = \Theta \left(\|x\|^{-s}\right)$ for some $s>d$. We show that the random walk defined by $S_n
Externí odkaz:
http://arxiv.org/abs/2209.09901
Autor:
Bäumler, Johannes
We study independent long-range percolation on $\mathbb{Z}^d$ for all dimensions $d$, where the vertices $u$ and $v$ are connected with probability 1 for $\|u-v\|_\infty=1$ and with probability $p(\beta,\{u,v\})=1-e^{-\beta \int_{u+\left[0,1\right)^d
Externí odkaz:
http://arxiv.org/abs/2208.04800
Autor:
Bäumler, Johannes
We study independent long-range percolation on $\mathbb{Z}^d$ where the vertices $u$ and $v$ are connected with probability 1 for $\|u-v\|_\infty=1$ and with probability $1-e^{-\beta \int_{u+\left[0,1\right)^d} \int_{u+\left[0,1\right)^d} \frac{1}{\|
Externí odkaz:
http://arxiv.org/abs/2208.04793
We study a dynamic matching procedure where homogeneous agents arrive at random according to a Poisson process and form edges at random yielding a sparse market. Agents leave according to a certain departure distribution and may leave early by formin
Externí odkaz:
http://arxiv.org/abs/2206.10287
Autor:
Bäumler, Johannes, Berger, Noam
Publikováno v:
Ann. Inst. H. Poincar\'e Probab. Statist. 60(1): 721-730 (February 2024)
We study independent long-range percolation on $\mathbb{Z}^d$ where the vertices $x$ and $y$ are connected with probability $1-e^{-\beta\|x-y\|^{-d-\alpha}}$ for $\alpha > 0$. Provided the critical exponents $\delta$ and $2-\eta$ defined by $\delta =
Externí odkaz:
http://arxiv.org/abs/2204.12410
Autor:
Bäumler, Johannes
Publikováno v:
Electron. J. Probab., Volume 24 (2019), paper no. 77, 17 pp
We consider a Spin Glass at temperature $T = 0$ where the underlying graph is a locally finite tree. We prove for a wide range of coupling distributions that uniqueness of ground states is equivalent to the maximal flow from any vertex to $\infty$ (w
Externí odkaz:
http://arxiv.org/abs/1812.02469
Autor:
Bäumler, Johannes1 (AUTHOR) johannes.baeumler@tum.de
Publikováno v:
Communications in Mathematical Physics. Dec2023, Vol. 404 Issue 3, p1495-1570. 76p.