Zobrazeno 1 - 10
of 29
pro vyhledávání: '"Bäck, Per"'
Given a set $A$ and an abelian group $B$ with operators in $A$, we introduce the Ore group extension $B[x ; \delta_B , \sigma_B]$ as the additive group $B[x]$, with $A[x]$ as a set of operators, the action of $A[x]$ on $B[x]$ being defined by mimicki
Externí odkaz:
http://arxiv.org/abs/2410.16761
Autor:
Bäck, Per, Richter, Johan
We prove several new versions of Hilbert's basis theorem for non-associative Ore extensions, non-associative skew Laurent polynomial rings, non-associative skew power series rings, and non-associative skew Laurent series rings. For non-associative sk
Externí odkaz:
http://arxiv.org/abs/2404.16889
Autor:
Aryapoor, Masood, Bäck, Per
Publikováno v:
J. Algebra 662 (2025), pp. 482-501
We introduce and study flipped non-associative polynomial rings. In particular, we show that all Cayley-Dickson algebras naturally appear as quotients of a certain type of such rings; this extends the classical construction of the complex numbers (an
Externí odkaz:
http://arxiv.org/abs/2403.03763
Autor:
Bäck, Per, Richter, Johan
We introduce hom-associative versions of the higher order Weyl algebras, generalizing the construction of the first hom-associative Weyl algebras. We then show that the higher order hom-associative Weyl algebras are simple, and that all their one-sid
Externí odkaz:
http://arxiv.org/abs/2403.00104
Autor:
Bäck, Per, Richter, Johan
We introduce non-associative skew Laurent polynomial rings and characterize when they are simple. Thereby, we generalize results by Jordan, Voskoglou, and Nystedt and \"Oinert.
Comment: 13 pages. This version replaces the first part of the previ
Comment: 13 pages. This version replaces the first part of the previ
Externí odkaz:
http://arxiv.org/abs/2207.07994
Autor:
Aryapoor, Masood, Bäck, Per
Publikováno v:
In Journal of Algebra 15 January 2025 662:482-501
Autor:
Bäck, Per, Richter, Johan
Publikováno v:
Int. Electron. J. Algebra 31 (2022), pp. 203-229
We introduce the first hom-associative Weyl algebras over a field of prime characteristic as a generalization of the first associative Weyl algebra in prime characteristic. First, we study properties of hom-associative algebras constructed from assoc
Externí odkaz:
http://arxiv.org/abs/2012.11659
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Bäck, Per
Publikováno v:
Dobrev V. (eds) Lie Theory and Its Applications in Physics. LT 2019. Springer Proceedings in Mathematics & Statistics, vol 335. Springer, Singapore (2020)
In this note, we introduce a notion of multi-parameter formal deformations of ternary hom-Nambu-Lie algebras. Within this framework, we construct formal deformations of the three-dimensional Jacobian determinant and of the cross-product in four-dimen
Externí odkaz:
http://arxiv.org/abs/1911.07051
Autor:
Bäck, Per, Richter, Johan
Publikováno v:
J. Pure Appl. Algebra 224(9) (2020)
The first (associative) Weyl algebra is formally rigid in the classical sense. In this paper, we show that it can however be formally deformed in a nontrivial way when considered as a so-called hom-associative algebra, and that this deformation prese
Externí odkaz:
http://arxiv.org/abs/1902.05412