Zobrazeno 1 - 10
of 15
pro vyhledávání: '"Bárcenas, Mauricio Medina"'
We are concerned with the boolean or more general with the complemented properties of idioms (complete upper-continuous modular lattices). In [Simmons&Cantor] the author introduces a device which captures in some informal speaking how far the idiom i
Externí odkaz:
http://arxiv.org/abs/1708.02619
In this article we study the behavior of left QI-rings under perfect localizations. We show that a perfect localization of a left QI-ring is a left QI-ring. We prove that Boyle's conjecture is true for left QI-rings with finite Gabriel dimension such
Externí odkaz:
http://arxiv.org/abs/1611.04672
For an $R$-module $M$, projective in $\sigma[M]$ and satisfying ascending chain condition (ACC) on left annihilators, we introduce the concept of Goldie module. We also use the concept of semiprime module defined by Raggi et. al. in \cite{S} to give
Externí odkaz:
http://arxiv.org/abs/1601.03436
Given a semiprime Goldie module $M$ projective in $\sigma[M]$ we study decompositions on its $M$-injective hull $\hat{M}$ in terms of the minimal prime in $M$ submodules. With this, we characterize the semiprime Goldie modules in $\mathbb{Z}$-Mod and
Externí odkaz:
http://arxiv.org/abs/1601.03444
Using the concepts of prime module, semiprime module and the concept of ascending chain condition (ACC) on annihilators for an $R$-module $M$ . We prove that if \ $M$ is semiprime \ and projective in $\sigma \left[ M\right] $, such that $M$ satisfies
Externí odkaz:
http://arxiv.org/abs/1601.03438
Given a complete modular meet-continuous lattice $A$, an inflator on $A$ is a monotone function $d\colon A\rightarrow A$such that $a\leq d(a)$ for all $a\in A$. If $I(A)$ is the set of all inflators on $A$, then $I(A)$ is a complete lattice. Motivate
Externí odkaz:
http://arxiv.org/abs/1511.09165
We introduce a lattice structure as a generalization of meet-continuous lattices and quantales. We develop a point-free approach to these new lattices and apply these results to $R$-modules. In particular, we give the module counterpart of the well k
Externí odkaz:
http://arxiv.org/abs/1511.09169
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Applied Categorical Structures; Feb2019, Vol. 27 Issue 1, p65-84, 20p
Publikováno v:
Communications in Algebra; 2018, Vol. 46 Issue 12, p5234-5240, 7p