Zobrazeno 1 - 10
of 41
pro vyhledávání: '"Azerad, Pascal"'
Autor:
Azerad, Pascal, Hanot, Marien-Lorenzo
We are interested in the numerical reconstruction of a vector field with prescribed divergence and curl in a general domain of R 3 or R 2 , not necessarily contractible. To this aim, we introduce some basic concepts of finite element exterieur calcul
Externí odkaz:
http://arxiv.org/abs/2201.06800
Autor:
Azerad, Pascal
Je présente essentiellement les travaux réalisés depuis ma thèse. Ils se classent en trois thèmes:Analyse asymptotique des équations de Navier-Stokes,Optimisation de forme d'ouvrages de lutte contre l'érosion du littoral,Etude d'équations aux
Externí odkaz:
http://tel.archives-ouvertes.fr/tel-00221442
http://tel.archives-ouvertes.fr/docs/00/22/14/42/PDF/hdrazerad.pdf
http://tel.archives-ouvertes.fr/docs/00/22/14/42/PDF/hdrazerad.pdf
Autor:
Azerad, Pascal, Bouharguane, Afaf
A class of finite difference schemes for solving a fractional anti-diffusive equation, recently proposed by Andrew C. Fowler to describe the dynamics of dunes, is considered. Their linear stability is analyzed using the standard Von Neumann analysis:
Externí odkaz:
http://arxiv.org/abs/1104.4861
Publikováno v:
Communications in Nonlinear Science and Numerical Simulation 17, 2 (2012) 867-881
In this paper, a new filtering method is presented for simultaneous noise reduction and enhancement of signals using a fractal scalar conservation law which is simply the forward heat equation modified by a fractional anti-diffusive term of lower ord
Externí odkaz:
http://arxiv.org/abs/1004.5193
Autor:
Azerad, Pascal, Brull, Stéphane
Publikováno v:
Comptes Rendus Math\'ematique 349, 13-14 (2011) 759-763
In this note we prove Poincar\'e type inequalities for a family of kinetic equations. We apply this inequality to the variational solution of a linear kinetic model.
Externí odkaz:
http://arxiv.org/abs/0805.3678
Publikováno v:
Discrete and Continuous Dynamical Systems-Series B 12 (2009), No. 4, 671-692
We study the existence of travelling-waves and local well-posedness in a subspace of $C_b^1(\mathbb{R})$ for a nonlinear evolution equation recently proposed by Andrew C. Fowler to study the dynamics of dunes.
Comment: 21 pages
Comment: 21 pages
Externí odkaz:
http://arxiv.org/abs/0802.2673
Publikováno v:
Differential and integral equations 23 (2010) 155--188
We investigate a non-local non linear conservation law, first introduced by A.C. Fowler to describe morphodynamics of dunes, see \cite{Fow01, Fow02}. A remarkable feature is the violation of the maximum principle, which allows for erosion phenomenon.
Externí odkaz:
http://arxiv.org/abs/0709.3360
Autor:
Azerad, Pascal, Mellouk, Mohamed
Publikováno v:
Potential Analysis 27 (2007) 183--197
In this paper, we prove existence, uniqueness and regularity for a class of stochastic partial differential equations with a fractional Laplacian driven by a space-time white noise in dimension one. The equation we consider may also include a reactio
Externí odkaz:
http://arxiv.org/abs/math/0510107
Publikováno v:
SIAM Journal on Numerical Analysis, 2017 Jan 01. 55(6), 3203-3224.
Externí odkaz:
https://www.jstor.org/stable/45048369
Publikováno v:
In Communications in Nonlinear Science and Numerical Simulation 2012 17(2):867-881