Zobrazeno 1 - 10
of 18
pro vyhledávání: '"Azam, Haniya"'
We present some tools for computations in the Fukaya category of a symplectic Landau-Ginzburg model. Specifically, we prove that several computations for these fibrations split into base and fiber computations.
Comment: 16 pages, 4 figures, mino
Comment: 16 pages, 4 figures, mino
Externí odkaz:
http://arxiv.org/abs/2312.00973
We describe the formulation of Fukaya categories of symplectic manifolds with $B$-fields. In addition, we give a formula for how the $A_\infty$ structure maps change as we deform an object by a Lagrangian isotopy.
Comment: 19 pages, 3 figures
Comment: 19 pages, 3 figures
Externí odkaz:
http://arxiv.org/abs/2311.04143
In this article, we provide an exposition about symplectic toric manifolds, which are symplectic manifolds $(M^{2n}, \omega)$ equipped with an effective Hamiltonian $\mathbb{T}^n\cong (S^1)^n$-action. We summarize the construction of $M$ as a symplec
Externí odkaz:
http://arxiv.org/abs/2103.08714
Autor:
Azam, Haniya, Blanchet, Christian
We construct the Fukaya category of a surface with genus greater than one and compute its Grothendieck group. We consider here a topological variant, in which we disregard the area form and use instead an admissibility condition borrowed from Heegaar
Externí odkaz:
http://arxiv.org/abs/1903.11928
We describe the torus-equivariant cohomology of weighted partial flag orbifolds ${\mathrm{w}}\Sigma$ of type $A$. We establish counterparts of several results known for the partial flag variety that collectively constitute what we refer to as ``Schub
Externí odkaz:
http://arxiv.org/abs/1711.03375
Publikováno v:
Algebr. Geom. Topol. 14 (2014) 57-90
The natural action of the symmetric group on the configuration spaces F(X; n) induces an action on the Kriz model E(X; n). The represen- tation theory of this DGA is studied and a big acyclic subcomplex which is Sn-invariant is described.
Commen
Commen
Externí odkaz:
http://arxiv.org/abs/1204.1272
Publikováno v:
Can. J. Math.-J. Can. Math. 67 (2015) 1024-1045
The symmetric group acts on the power set and also on the set of square free polynomials. These two related representations are analyzed from the stability point of view. An application is given for the action of the symmetric group on the cohomology
Externí odkaz:
http://arxiv.org/abs/1106.4926
Autor:
Azam, Haniya
Publikováno v:
Bulletin mathématique de la Société des Sciences Mathématiques de Roumanie, 2015 Jan 01. 58(1), 33-47.
Externí odkaz:
http://www.jstor.org/stable/43679379
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.