Zobrazeno 1 - 10
of 12
pro vyhledávání: '"Ayyadurai, Sankaranarayanan"'
In this paper, we study the average behaviour of the coefficients of triple product L-functions and some related L-functions corresponding to normalized primitive holomorphic cusp form $f(z)$ of weight $k$ for the full modular group $SL(2,\ \mathbb{Z
Externí odkaz:
http://arxiv.org/abs/2205.10554
Publikováno v:
Czechoslovak Mathematical Journal. :1-17
Publikováno v:
European Journal of Mathematics. 9
In this paper, we study the average behaviour of the coefficients of triple product L-functions and some related L-functions corresponding to normalized primitive holomorphic cusp form $f(z)$ of weight $k$ for the full modular group $SL(2,\ \mathbb{Z
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::650c9858161f04b66a45804ce9e7e820
http://arxiv.org/abs/2205.10554
http://arxiv.org/abs/2205.10554
Publikováno v:
Research in Number Theory. 8
Publikováno v:
Canadian Mathematical Bulletin. 58:548-560
Let Sk(Γ) be the space of holomorphic cusp forms of even integral weight k for the full modular group SL(z, ℤ). Let be the n-th normalized Fourier coefficients of three distinct holomorphic primitive cusp forms , and h(z) ∊ Sk3 (Γ), respectivel
Publikováno v:
Rocky Mountain J. Math. 47, no. 2 (2017), 553-570
In this paper, we investigate the average behavior of coefficients of the triple product $L$-function $L(f \otimes f \otimes f,s)$ attached to a primitive holomorphic cusp form $f(z)$ of weight~$k$ for the full modular group $SL(2, \Z )$. Here we cal
Publikováno v:
Acta Arithmetica.
Publikováno v:
International Journal of Number Theory. :905-918
We specialize a problem studied by Elliott, the behavior of arbitrary sequences ap of complex numbers on residue classes to prime moduli to the case ap = e(αp). For these special cases, we obtain under certain additional conditions improvements on E
Autor:
Ayyadurai Sankaranarayanan
Publikováno v:
Illinois J. Math. 56, no. 2 (2012), 551-569
We prove a nontrivial upper bound for the quantity (with $\mathbf{e}(z)=e^{2\pi iz}$), ¶ \[\biggl\vert \sum_{X\le n\le 2X}\lambda (n)\mathbf{e}(\alpha{\sqrt{n}} )\biggr\vert ,\] ¶ where $\alpha$ is any nonzero real number. This upper bound is an im