Zobrazeno 1 - 10
of 17
pro vyhledávání: '"Ayhan Dil"'
Publikováno v:
The Ramanujan Journal.
In this paper, we consider meromorphic extension of the function \[ \zeta_{h^{\left( r\right) }}\left( s\right) =\sum_{k=1}^{\infty} \frac{h_{k}^{\left( r\right) }}{k^{s}},\text{ }\operatorname{Re}\left( s\right) >r, \] (which we call \textit{hyperha
Publikováno v:
Bulletin of the Malaysian Mathematical Sciences Society. 45:113-131
We give explicit evaluations of the linear and non-linear Euler sums of hyperharmonic numbers $h_{n}^{\left( r\right) }$ with reciprocal binomial coefficients. These evaluations enable us to extend closed form formula of Euler sums of hyperharmonic n
Publikováno v:
Lithuanian Mathematical Journal. 60:9-24
We give new proofs of some known results on the values of the Riemann zeta function at positive integers and obtain some new theorems related to these values. Considering even zeta values as ζ(2n) = ηnπ2n, we obtain the generating functions of the
Autor:
Ayhan Dil
Publikováno v:
Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi
In this paper we investigate some properties of Hyperharmonic function defined$H_{z}^{(w)}=\frac{\left( z\right) _{w}}{z\Gamma\left( w\right) }\left(\Psi\left( z+w\right) -\Psi\left( w\right) \right)$where $\text{ \ \ }w\text{, }z+w\in\mathbb{C}\back
Autor:
Ayhan DİL
Publikováno v:
Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, Vol 23, Pp 187-193 (2019)
Özet: Bu çalışmada$H_{z}^{(w)}=\frac{\left( z\right) _{w}}{z\Gamma\left( w\right) }\left( \Psi\left( z+w\right) -\Psi\left( w\right) \right)$where $\text{ \ \ }w\text{, }z+w\in\mathbb{C}\backslash\left( \mathbb{Z}^{-}\cup\left\{ 0\right\} \right)
Autor:
Khristo N. Boyadzhiev, Ayhan Dil
Publikováno v:
Analysis Mathematica. 42:203-224
We provide several properties of the geometric polynomials discussed in earlier works of the authors. Further, the geometric polynomials are used to obtain a closed form evaluation of certain series involving Riemann's zeta function.
Comment: 18
Comment: 18
Autor:
Erkan Muniroğlu, Ayhan Dil
In this study, depending on the upper and the lower indices of the hyperharmonic number $h_{n}^{(r)}$, nonlinear recurrence relations are obtained. It is shown that generalized harmonic number and hyperharmonic number can be obtained from derivatives
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::83a96deacb8009bf51f4ffb832f56ae1
Publikováno v:
Volume: 41, Issue: 6 1640-1655
Turkish Journal of Mathematics
Turkish Journal of Mathematics
In this paper we collect two generalizations of harmonic numbers (namelygeneralized harmonic numbers and hyperharmonic numbers) under one roof.Recursion relations, closed-form evaluations, and generating functions of thisunified extension are obtaine
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5ec2af644254ec49204f3e5c4b204bee
https://dergipark.org.tr/tr/pub/tbtkmath/issue/35842/401787
https://dergipark.org.tr/tr/pub/tbtkmath/issue/35842/401787
Autor:
Khristo N. Boyadzhiev, Ayhan Dil
We obtain a series transformation formula involving the classical Hermite polynomials. We then provide a number of applications using appropriate binomial transformations. Several of the new series involve Hermite polynomials and harmonic numbers, Lu
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::81c150b42af80b9d167d92641a0c0c15
http://arxiv.org/abs/1710.00687
http://arxiv.org/abs/1710.00687
Autor:
István Mező, Ayhan Dil
Publikováno v:
Open Mathematics, Vol 7, Iss 2, Pp 310-321 (2009)
In this paper we use the Euler-Seidel method for deriving new identities for hyperharmonic and r-Stirling numbers. The exponential generating function is determined for hyperharmonic numbers, which result is a generalization of Gosper’s identity. A