Zobrazeno 1 - 10
of 252
pro vyhledávání: '"Ayala, Mario"'
Autor:
Ayala, Mario, Zimmer, Johannes
We consider a d-dimensional symmetric inclusion process (SIP), where particles are allowed to jump arbitrarily far apart. We establish both the hydrodynamic limit and non-equilibrium fluctuations for the empirical measure of particles. With the help
Externí odkaz:
http://arxiv.org/abs/2410.21933
Autor:
Ayala, Mario
We consider a sequence of Markov processes $\lbrace X_t^n \mid n \in \mathbb{N} \rbrace$ with Dirichlet forms converging in the Mosco sense of Kuwae and Shioya to the Dirichlet form associated with a Markov process $X_t$. Under this assumption, we de
Externí odkaz:
http://arxiv.org/abs/2406.19088
In this paper we revisit the notion of grouped dispersal that have been introduced by Soubeyrand and co-authors \cite{soubeyrand2011patchy} to model the simultaneous (and hence dependent) dispersal of several propagules from a single source in a homo
Externí odkaz:
http://arxiv.org/abs/2405.08384
In this work we propose a measure-valued stochastic process representing the dynamics of a virus population, structured by phenotypic traits and geographical space, and where viruses are transported between spatial locations by mechanical vectors. As
Externí odkaz:
http://arxiv.org/abs/2211.04563
Inspired by the works in [1] and [8] we introduce what we call $k$-th-order fluctuation fields and study their scaling limits. This construction is done in the context of particle systems with the property of orthogonal self-duality. This type of dua
Externí odkaz:
http://arxiv.org/abs/2004.08412
We study the symmetric inclusion process (SIP) in the condensation regime. We obtain an explicit scaling for the variance of the density field in this regime, when initially started from a homogeneous product measure. This provides relevant new infor
Externí odkaz:
http://arxiv.org/abs/1906.09887
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
We study fluctuation fields of orthogonal polynomials in the context of particle systems with duality. We thereby obtain a systematic orthogonal decomposition of the fluctuation fields of local functions, where the order of every term can be quantifi
Externí odkaz:
http://arxiv.org/abs/1712.08492
Autor:
Ayala, Mario mhayala@untdf.edu.ar, Haristoy, Ricardo Pérez raperez21@uc.cl
Publikováno v:
Journal of Global South Studies. Fall2023, Vol. 40 Issue 2, p418-440. 23p.