Zobrazeno 1 - 4
of 4
pro vyhledávání: '"Ayşe Dilek Güngör"'
Autor:
Ayşe Dilek Güngör, Ramazan Türkmen
Publikováno v:
Mathematical Inequalities & Applications. :23-31
In this study, we have obtained bounds for extreme singular values of a complex matrix A of order n × n . In addition, we have found a bounds for the extreme singular values of Hilbert matrix, its Hadamard square root, Cauchy-Toeplitz matrix, Cauchy
WOS: 000345460700023
The spread of the singless Laplacian of a simple graph G is defined as SQ(G) = mu(1)(G) - mu(n)(G), where mu(1)(G) and mu(n)(G) are the maximum and minimum eigenvalues of the signless Laplacian matrix of G, respectively. In
The spread of the singless Laplacian of a simple graph G is defined as SQ(G) = mu(1)(G) - mu(n)(G), where mu(1)(G) and mu(n)(G) are the maximum and minimum eigenvalues of the signless Laplacian matrix of G, respectively. In
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9723f8b95acccf735566ae7e50262962
https://hdl.handle.net/20.500.12395/31018
https://hdl.handle.net/20.500.12395/31018
The main purpose of this paper is to define and investigate the Kirchhoff matrix, a new Kirchhoff index, the Kirchhoff energy and the Kirchhoff Estrada index of a graph. In addition, we establish upper and lower bounds for these new indexes and energ
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______9458::e4eba5a89e7306b8dd00f7a3fc1a7fd2
http://hdl.handle.net/11452/32736
http://hdl.handle.net/11452/32736
Autor:
Ayşe Dilek Güngör
Publikováno v:
Journal of Computational and Applied Mathematics. 234:316