Zobrazeno 1 - 10
of 4 970
pro vyhledávání: '"Awadalla TO"'
Autor:
Awadalla, Anas, Xue, Le, Shu, Manli, Yan, An, Wang, Jun, Purushwalkam, Senthil, Shen, Sheng, Lee, Hannah, Lo, Oscar, Park, Jae Sung, Guha, Etash, Savarese, Silvio, Schmidt, Ludwig, Choi, Yejin, Xiong, Caiming, Xu, Ran
We introduce BLIP3-KALE, a dataset of 218 million image-text pairs that bridges the gap between descriptive synthetic captions and factual web-scale alt-text. KALE augments synthetic dense image captions with web-scale alt-text to generate factually
Externí odkaz:
http://arxiv.org/abs/2411.07461
Autor:
Liu, Liyuan, Kim, Young Jin, Wang, Shuohang, Liang, Chen, Shen, Yelong, Cheng, Hao, Liu, Xiaodong, Tanaka, Masahiro, Wu, Xiaoxia, Hu, Wenxiang, Chaudhary, Vishrav, Lin, Zeqi, Zhang, Chenruidong, Xue, Jilong, Awadalla, Hany, Gao, Jianfeng, Chen, Weizhu
Mixture-of-Experts (MoE) models scale more effectively than dense models due to sparse computation through expert routing, selectively activating only a small subset of expert modules. However, sparse computation challenges traditional training pract
Externí odkaz:
http://arxiv.org/abs/2409.12136
Autor:
Qin, Can, Xia, Congying, Ramakrishnan, Krithika, Ryoo, Michael, Tu, Lifu, Feng, Yihao, Shu, Manli, Zhou, Honglu, Awadalla, Anas, Wang, Jun, Purushwalkam, Senthil, Xue, Le, Zhou, Yingbo, Wang, Huan, Savarese, Silvio, Niebles, Juan Carlos, Chen, Zeyuan, Xu, Ran, Xiong, Caiming
We present xGen-VideoSyn-1, a text-to-video (T2V) generation model capable of producing realistic scenes from textual descriptions. Building on recent advancements, such as OpenAI's Sora, we explore the latent diffusion model (LDM) architecture and i
Externí odkaz:
http://arxiv.org/abs/2408.12590
Autor:
Xue, Le, Shu, Manli, Awadalla, Anas, Wang, Jun, Yan, An, Purushwalkam, Senthil, Zhou, Honglu, Prabhu, Viraj, Dai, Yutong, Ryoo, Michael S, Kendre, Shrikant, Zhang, Jieyu, Qin, Can, Zhang, Shu, Chen, Chia-Chih, Yu, Ning, Tan, Juntao, Awalgaonkar, Tulika Manoj, Heinecke, Shelby, Wang, Huan, Choi, Yejin, Schmidt, Ludwig, Chen, Zeyuan, Savarese, Silvio, Niebles, Juan Carlos, Xiong, Caiming, Xu, Ran
This report introduces xGen-MM (also known as BLIP-3), a framework for developing Large Multimodal Models (LMMs). The framework comprises meticulously curated datasets, a training recipe, model architectures, and a resulting suite of LMMs. xGen-MM, s
Externí odkaz:
http://arxiv.org/abs/2408.08872
Autor:
Chandu, Khyathi Raghavi, Li, Linjie, Awadalla, Anas, Lu, Ximing, Park, Jae Sung, Hessel, Jack, Wang, Lijuan, Choi, Yejin
The ability to acknowledge the inevitable uncertainty in their knowledge and reasoning is a prerequisite for AI systems to be truly truthful and reliable. In this paper, we present a taxonomy of uncertainty specific to vision-language AI systems, dis
Externí odkaz:
http://arxiv.org/abs/2407.01942
Autor:
Awadalla, Anas, Xue, Le, Lo, Oscar, Shu, Manli, Lee, Hannah, Guha, Etash Kumar, Jordan, Matt, Shen, Sheng, Awadalla, Mohamed, Savarese, Silvio, Xiong, Caiming, Xu, Ran, Choi, Yejin, Schmidt, Ludwig
Multimodal interleaved datasets featuring free-form interleaved sequences of images and text are crucial for training frontier large multimodal models (LMMs). Despite the rapid progression of open-source LMMs, there remains a pronounced scarcity of l
Externí odkaz:
http://arxiv.org/abs/2406.11271
Autor:
Abdin, Marah, Aneja, Jyoti, Awadalla, Hany, Awadallah, Ahmed, Awan, Ammar Ahmad, Bach, Nguyen, Bahree, Amit, Bakhtiari, Arash, Bao, Jianmin, Behl, Harkirat, Benhaim, Alon, Bilenko, Misha, Bjorck, Johan, Bubeck, Sébastien, Cai, Martin, Cai, Qin, Chaudhary, Vishrav, Chen, Dong, Chen, Dongdong, Chen, Weizhu, Chen, Yen-Chun, Chen, Yi-Ling, Cheng, Hao, Chopra, Parul, Dai, Xiyang, Dixon, Matthew, Eldan, Ronen, Fragoso, Victor, Gao, Jianfeng, Gao, Mei, Gao, Min, Garg, Amit, Del Giorno, Allie, Goswami, Abhishek, Gunasekar, Suriya, Haider, Emman, Hao, Junheng, Hewett, Russell J., Hu, Wenxiang, Huynh, Jamie, Iter, Dan, Jacobs, Sam Ade, Javaheripi, Mojan, Jin, Xin, Karampatziakis, Nikos, Kauffmann, Piero, Khademi, Mahoud, Kim, Dongwoo, Kim, Young Jin, Kurilenko, Lev, Lee, James R., Lee, Yin Tat, Li, Yuanzhi, Li, Yunsheng, Liang, Chen, Liden, Lars, Lin, Xihui, Lin, Zeqi, Liu, Ce, Liu, Liyuan, Liu, Mengchen, Liu, Weishung, Liu, Xiaodong, Luo, Chong, Madan, Piyush, Mahmoudzadeh, Ali, Majercak, David, Mazzola, Matt, Mendes, Caio César Teodoro, Mitra, Arindam, Modi, Hardik, Nguyen, Anh, Norick, Brandon, Patra, Barun, Perez-Becker, Daniel, Portet, Thomas, Pryzant, Reid, Qin, Heyang, Radmilac, Marko, Ren, Liliang, de Rosa, Gustavo, Rosset, Corby, Roy, Sambudha, Ruwase, Olatunji, Saarikivi, Olli, Saied, Amin, Salim, Adil, Santacroce, Michael, Shah, Shital, Shang, Ning, Sharma, Hiteshi, Shen, Yelong, Shukla, Swadheen, Song, Xia, Tanaka, Masahiro, Tupini, Andrea, Vaddamanu, Praneetha, Wang, Chunyu, Wang, Guanhua, Wang, Lijuan, Wang, Shuohang, Wang, Xin, Wang, Yu, Ward, Rachel, Wen, Wen, Witte, Philipp, Wu, Haiping, Wu, Xiaoxia, Wyatt, Michael, Xiao, Bin, Xu, Can, Xu, Jiahang, Xu, Weijian, Xue, Jilong, Yadav, Sonali, Yang, Fan, Yang, Jianwei, Yang, Yifan, Yang, Ziyi, Yu, Donghan, Yuan, Lu, Zhang, Chenruidong, Zhang, Cyril, Zhang, Jianwen, Zhang, Li Lyna, Zhang, Yi, Zhang, Yue, Zhang, Yunan, Zhou, Xiren
We introduce phi-3-mini, a 3.8 billion parameter language model trained on 3.3 trillion tokens, whose overall performance, as measured by both academic benchmarks and internal testing, rivals that of models such as Mixtral 8x7B and GPT-3.5 (e.g., phi
Externí odkaz:
http://arxiv.org/abs/2404.14219
Autor:
Chaves, Juan Manuel Zambrano, Huang, Shih-Cheng, Xu, Yanbo, Xu, Hanwen, Usuyama, Naoto, Zhang, Sheng, Wang, Fei, Xie, Yujia, Khademi, Mahmoud, Yang, Ziyi, Awadalla, Hany, Gong, Julia, Hu, Houdong, Yang, Jianwei, Li, Chunyuan, Gao, Jianfeng, Gu, Yu, Wong, Cliff, Wei, Mu, Naumann, Tristan, Chen, Muhao, Lungren, Matthew P., Chaudhari, Akshay, Yeung-Levy, Serena, Langlotz, Curtis P., Wang, Sheng, Poon, Hoifung
The scaling laws and extraordinary performance of large foundation models motivate the development and utilization of such models in biomedicine. However, despite early promising results on some biomedical benchmarks, there are still major challenges
Externí odkaz:
http://arxiv.org/abs/2403.08002
Autor:
Ma, Yubo, Gou, Zhibin, Hao, Junheng, Xu, Ruochen, Wang, Shuohang, Pan, Liangming, Yang, Yujiu, Cao, Yixin, Sun, Aixin, Awadalla, Hany, Chen, Weizhu
Scientific reasoning poses an excessive challenge for even the most advanced Large Language Models (LLMs). To make this task more practical and solvable for LLMs, we introduce a new task setting named tool-augmented scientific reasoning. This setting
Externí odkaz:
http://arxiv.org/abs/2402.11451
Autor:
Groeneveld, Dirk, Awadalla, Anas, Beltagy, Iz, Bhagia, Akshita, Magnusson, Ian, Peng, Hao, Tafjord, Oyvind, Walsh, Pete, Richardson, Kyle, Dodge, Jesse
The success of large language models has shifted the evaluation paradigms in natural language processing (NLP). The community's interest has drifted towards comparing NLP models across many tasks, domains, and datasets, often at an extreme scale. Thi
Externí odkaz:
http://arxiv.org/abs/2312.10253