Zobrazeno 1 - 10
of 135
pro vyhledávání: '"Avramov, Luchezar L."'
This is a study of the sequences of Betti numbers of finitely generated modules over a complete intersection local ring, $R$. The subsequences $\{\beta^R_{i}(M)\}_{i\geq 0}$ with even, respectively, odd $i$ are known to be eventually given by polynom
Externí odkaz:
http://arxiv.org/abs/2208.04770
We describe new classes of noetherian local rings $R$ whose finitely generated modules $M$ have the property that $Tor_i^R(M,M)=0$ for $i\gg 0$ implies that $M$ has finite projective dimension, or $Ext^i_R(M,M)=0$ for $i\gg 0$ implies that $M$ has fi
Externí odkaz:
http://arxiv.org/abs/2005.10808
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
This paper concerns the homological properties of a module $M$ over a commutative noetherian ring $R$ relative to a presentation $R\cong P/I$, where $P$ is local ring. It is proved that the Betti sequence of $M$ with respect to $P/(f)$ for a regular
Externí odkaz:
http://arxiv.org/abs/1803.06715
Publikováno v:
In Journal of Algebra 15 November 2022 610:463-490
Publikováno v:
Doc. Math. 23, 1601-1619 (2018)
There is a well known link from the first topic in the title to the third one. In this paper we thread that link through the second topic. The central result is a criterion for the tensor nilpotence of morphisms of perfect complexes over commutative
Externí odkaz:
http://arxiv.org/abs/1711.04052
Conditions on the Koszul complex of a noetherian local ring $R$ guarantee that $\mathrm{Tor}^{R}_{i}(M,N)$ is non-zero for infinitely many $i$, when $M$ and $N$ are finitely generated $R$-modules of infinite projective dimension. These conditions are
Externí odkaz:
http://arxiv.org/abs/1508.00748
Estimates are obtained for the degrees of minimal syzygies of quotient algebras of polynomial rings. For a class that includes Koszul algebra in almost all characteristics, these degrees are shown to increase by at most 2 from one syzygy module to th
Externí odkaz:
http://arxiv.org/abs/1308.6811
Autor:
Avramov, Luchezar L.
Publikováno v:
Proceedings of Abel Symposium 2011 "Algebras, quivers and representations"
A DG algebras $A$ over a field $k$ with $H(A)$ connected and $H_{<0}(A)=0$ has a unique up to isomorphism DG module $K$ with $H(K)\cong k$. It is proved that if $H(A)$ is degreewise finite, then $RHom_A(?,K): D^{df}_{+}(A)^{op} \equiv D_{df}^{+}}(RHo
Externí odkaz:
http://arxiv.org/abs/1305.4230
For any non-zero finite module M of finite projective dimension over a noetherian local ring R with maximal ideal m and residue field k, it is proved that the natural map Ext_R(k,M)-->Ext_R(k,M/mM) is non-zero when R is regular and is zero otherwise.
Externí odkaz:
http://arxiv.org/abs/1208.4458