Zobrazeno 1 - 10
of 137
pro vyhledávání: '"Avramidi, Ivan G"'
Autor:
Avramidi, Ivan G., Niardi, Roberto
We develop a novel approach to Quantum Mechanics that we call Curved Quantum Mechanics. We introduce an infinite-dimensional K\"ahler manifold ${\cal M}$, that we call the state manifold, such that the cotangent space $T_z^*{\cal M}$ is a Hilbert spa
Externí odkaz:
http://arxiv.org/abs/2412.08007
Autor:
Avramidi, Ivan G., Niardi, Roberto
MOND theory has arisen as a promising alternative to dark matter in explaining the collection of discrepancies that constitute the so-called missing mass problem. The MOND paradigm is briefly reviewed. It is shown that MOND theory can be incorporated
Externí odkaz:
http://arxiv.org/abs/2309.14270
Autor:
Avramidi, Ivan G.
Publikováno v:
Rev. Math. Phys. (2024)
The study of spectral properties of natural geometric elliptic partial differential operators acting on smooth sections of vector bundles over Riemannian manifolds is a central theme in global analysis, differential geometry and mathematical physics.
Externí odkaz:
http://arxiv.org/abs/2301.08728
Autor:
Avramidi, Ivan G.
Publikováno v:
Journal of Geometry and Physics, 161 (2021) 104044
We study the algebra of semigroups of Laplacians on the Weyl algebra. We consider first-order partial differential operators $\nabla^\pm_i$ forming the Lie algebra $[\nabla^\pm_j,\nabla^\pm_k]= i\mathcal{R}^\pm_{jk}$ and $[\nabla^+_j,\nabla^-_k] =i\f
Externí odkaz:
http://arxiv.org/abs/2008.12344
Autor:
Avramidi, Ivan G.
Publikováno v:
Journal of Mathematical Physics 61, 032303 (2020)
We introduce and study new spectral invariant of two elliptic partial differential operators of Laplace and Dirac type on compact smooth manifolds without boundary that depends on both the eigenvalues and the eigensections of the operators, which is
Externí odkaz:
http://arxiv.org/abs/1909.09680
Autor:
Avramidi, Ivan G.
Publikováno v:
J. Geom. Phys. 150 (2020) 103599
We introduce and study {\it new} relative spectral invariants of {\it two} elliptic partial differential operators of Laplace and Dirac type on compact smooth manifolds without boundary that depend on both the eigenvalues and the eigensections of the
Externí odkaz:
http://arxiv.org/abs/1908.01265
Autor:
Avramidi, Ivan G
Publikováno v:
J. Geom. Phys. 112 (2017) 271-288
We study new invariants of elliptic partial differential operators acting on sections of a vector bundle over a closed Riemannian manifold that we call the relativistic heat trace and the quantum heat traces. We obtain some reduction formulas express
Externí odkaz:
http://arxiv.org/abs/1611.03760
Autor:
Avramidi, Ivan G., Collopy, Samuel J.
Publikováno v:
JHEP 11 (2015) 193
We study quantum gravity with the Einstein-Hilbert action including the cosmological constant on the Euclidean Einstein universe $S^1\times S^3$. We compute exactly the spectra and the heat kernels of the relevant operators on $S^3$ and use these res
Externí odkaz:
http://arxiv.org/abs/1509.00929