Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Avner Kiro"'
Autor:
Avner Kiro, Alon Nishry
Publikováno v:
Journal of the London Mathematical Society. 104:1172-1203
We study fluctuations in the number of zeros of random analytic functions given by a Taylor series whose coefficients are independent complex Gaussians. When the functions are entire, we find sharp bounds for the asymptotic growth rate of the varianc
Autor:
Avner Kiro
Publikováno v:
Journal d'Analyse Mathématique. 142:193-269
We study the Borel map, which maps infinitely differentiable functions on an interval to the jets of their Taylor coefficients at a given point in the interval. Our main results include a complete description of the image of the Borel map for Beurlin
Publikováno v:
Israel Journal of Mathematics
Consider an equation of the form $f(x)=g(x^k)$, where $k>1$ and $f(x)$ is a function in a given Carleman class of smooth functions. For each $k$, we construct a Carleman-type class which contains all the smooth solutions $g(x)$ to such equations. We
Publikováno v:
Analysis as a Tool in Mathematical Physics ISBN: 9783030315306
We consider directed weighted graphs and define various families of path counting functions. Our main results are explicit formulas for the main term of the asymptotic growth rate of these counting functions, under some irrationality assumptions on t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::825bfbe18681839235c4fa56a442ee5f
https://doi.org/10.1007/978-3-030-31531-3_20
https://doi.org/10.1007/978-3-030-31531-3_20
Autor:
Mikhail Sodin, Avner Kiro
Publikováno v:
Expositiones Mathematicae. 35:443-477
For a class of functions γ analytic in the angle { s : | arg ( s ) | α 0 } with π 2 α 0 π , we describe the asymptotic behaviour of the entire function E ( z ) = ∑ n ≥ 0 z n γ ( n + 1 ) and of the analytic function K ( z ) = 1 2 π i ∫ c
Autor:
Avner Kiro, Alon Nishry
Publikováno v:
Electron. Commun. Probab.
In this note we consider a certain class of Gaussian entire functions, characterized by some asymptotic properties of their covariance kernels, which we call admissible (as defined by Hayman). A notable example is the Gaussian Entire Function, whose
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1a57c9a02175a2a27bada2941bf494a5
https://projecteuclid.org/euclid.ecp/1559700466
https://projecteuclid.org/euclid.ecp/1559700466