Zobrazeno 1 - 4
of 4
pro vyhledávání: '"Aviram Bar-Haim"'
Autor:
Tzung-Chien Hsieh, Aviram Bar-Haim, Shahida Moosa, Nadja Ehmke, Karen W. Gripp, Jean Tori Pantel, Magdalena Danyel, Martin Atta Mensah, Denise Horn, Stanislav Rosnev, Nicole Fleischer, Guilherme Bonini, Alexander Hustinx, Alexander Schmid, Alexej Knaus, Behnam Javanmardi, Hannah Klinkhammer, Hellen Lesmann, Sugirthan Sivalingam, Tom Kamphans, Wolfgang Meiswinkel, Frédéric Ebstein, Elke Krüger, Sébastien Küry, Stéphane Bézieau, Axel Schmidt, Sophia Peters, Hartmut Engels, Elisabeth Mangold, Martina Kreiß, Kirsten Cremer, Claudia Perne, Regina C. Betz, Tim Bender, Kathrin Grundmann-Hauser, Tobias B. Haack, Matias Wagner, Theresa Brunet, Heidi Beate Bentzen, Luisa Averdunk, Kimberly Christine Coetzer, Gholson J. Lyon, Malte Spielmann, Christian P. Schaaf, Stefan Mundlos, Markus M. Nöthen, Peter M. Krawitz
Publikováno v:
Nat. Genet. 54, 349-357 (2022)
Many monogenic disorders cause a characteristic facial morphology. Artificial intelligence can support physicians in recognizing these patterns by associating facial phenotypes with the underlying syndrome through training on thousands of patient pho
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::45988d649a8b4b49875195265ed41e07
https://push-zb.helmholtz-muenchen.de/frontdoor.php?source_opus=64310
https://push-zb.helmholtz-muenchen.de/frontdoor.php?source_opus=64310
Autor:
Malte Spielmann, Stéphane Bézieau, Elisabeth Mangold, Markus M. Nöthen, Peter Krawitz, Hartmut Engels, Nicole Fleischer, Matias Wagner, Axel Schmidt, Tobias B. Haack, Shahida Moosa, Alexej Knaus, Tzung-Chien Hsieh, Aviram Bar-Haim, Sugirthan Sivalingam, Martin-Atta Mensah, Stefan Mundlos, Nadja Ehmke, Karen W. Gripp, Denise Horn, Elke Krüger, Sébastien Küry, Theresa Brunet, Frédéric Ebstein, Christian P. Schaaf, Kathrin Grundmann-Hauser, Regina C. Betz, Martina Kreiß, Tom Kamphans, Claudia Perne, Sophia Peters, Magdalena Danyel, Heidi Beate Bentzen, Alexander Schmid, Guilherme Bonini, Kirsten Cremer, Jean Tori Pantel
A large fraction of monogenic disorders causes craniofacial abnormalities with characteristic facial morphology. These disorders can be diagnosed more efficiently with the support of computer-aided next-generation phenotyping tools, such as DeepGesta
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::1dc39a56fb227677101df26697957581
https://doi.org/10.21203/rs.3.rs-138785/v1
https://doi.org/10.21203/rs.3.rs-138785/v1
Autor:
Tzung-Chien Hsieh, Aviram Bar-Haim, Shahida Moosa, Nadja Ehmke, Karen W. Gripp, Jean Tori Pantel, Magdalena Danyel, Martin Atta Mensah, Denise Horn, Stanislav Rosnev, Nicole Fleischer, Guilherme Bonini, Alexander Hustinx, Alexander Schmid, Alexej Knaus, Behnam Javanmardi, Hannah Klinkhammer, Hellen Lesmann, Sugirthan Sivalingam, Tom Kamphans, Wolfgang Meiswinkel, Frédéric Ebstein, Elke Krüger, Sébastien Küry, Stéphane Bézieau, Axel Schmidt, Sophia Peters, Hartmut Engels, Elisabeth Mangold, Martina Kreiß, Kirsten Cremer, Claudia Perne, Regina C. Betz, Tim Bender, Kathrin Grundmann-Hauser, Tobias B. Haack, Matias Wagner, Theresa Brunet, Heidi Beate Bentzen, Luisa Averdunk, Kimberly Christine Coetzer, Gholson J. Lyon, Malte Spielmann, Christian Schaaf, Stefan Mundlos, Markus M. Nöthen, Peter Krawitz
Publikováno v:
Nat Genet
A large fraction of monogenic disorders causes craniofacial abnormalities with characteristic facial morphology. These disorders can be diagnosed more efficiently with the support of computer-aided next-generation phenotyping tools, such as DeepGesta
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ba8b172bb005662f7f54de852138d50c
https://doi.org/10.1101/2020.12.28.20248193
https://doi.org/10.1101/2020.12.28.20248193
Autor:
Aviram Bar-Haim, Lior Wolf
Publikováno v:
CVPR
We propose to modify the common training protocols of optical flow, leading to sizable accuracy improvements without adding to the computational complexity of the training process. The improvement is based on observing the bias in sampling challengin