Zobrazeno 1 - 10
of 15
pro vyhledávání: '"Avi Ben-Cohen"'
Autor:
Patrick Bilic, Patrick Christ, Hongwei Bran Li, Eugene Vorontsov, Avi Ben-Cohen, Georgios Kaissis, Adi Szeskin, Colin Jacobs, Gabriel Efrain Humpire Mamani, Gabriel Chartrand, Fabian Lohöfer, Julian Walter Holch, Wieland Sommer, Felix Hofmann, Alexandre Hostettler, Naama Lev-Cohain, Michal Drozdzal, Michal Marianne Amitai, Refael Vivanti, Jacob Sosna, Ivan Ezhov, Anjany Sekuboyina, Fernando Navarro, Florian Kofler, Johannes C. Paetzold, Suprosanna Shit, Xiaobin Hu, Jana Lipková, Markus Rempfler, Marie Piraud, Jan Kirschke, Benedikt Wiestler, Zhiheng Zhang, Christian Hülsemeyer, Marcel Beetz, Florian Ettlinger, Michela Antonelli, Woong Bae, Míriam Bellver, Lei Bi, Hao Chen, Grzegorz Chlebus, Erik B. Dam, Qi Dou, Chi-Wing Fu, Bogdan Georgescu, Xavier Giró-i-Nieto, Felix Gruen, Xu Han, Pheng-Ann Heng, Jürgen Hesser, Jan Hendrik Moltz, Christian Igel, Fabian Isensee, Paul Jäger, Fucang Jia, Krishna Chaitanya Kaluva, Mahendra Khened, Ildoo Kim, Jae-Hun Kim, Sungwoong Kim, Simon Kohl, Tomasz Konopczynski, Avinash Kori, Ganapathy Krishnamurthi, Fan Li, Hongchao Li, Junbo Li, Xiaomeng Li, John Lowengrub, Jun Ma, Klaus Maier-Hein, Kevis-Kokitsi Maninis, Hans Meine, Dorit Merhof, Akshay Pai, Mathias Perslev, Jens Petersen, Jordi Pont-Tuset, Jin Qi, Xiaojuan Qi, Oliver Rippel, Karsten Roth, Ignacio Sarasua, Andrea Schenk, Zengming Shen, Jordi Torres, Christian Wachinger, Chunliang Wang, Leon Weninger, Jianrong Wu, Daguang Xu, Xiaoping Yang, Simon Chun-Ho Yu, Yading Yuan, Miao Yue, Liping Zhang, Jorge Cardoso, Spyridon Bakas, Rickmer Braren, Volker Heinemann, Christopher Pal, An Tang, Samuel Kadoury, Luc Soler, Bram van Ginneken, Hayit Greenspan, Leo Joskowicz, Bjoern Menze
Publikováno v:
Med. Image Anal. 84:102680 (2022)
Medical Image Analysis, 84
Bilic, P, Christ, P, Li, H B, Vorontsov, E, Ben-Cohen, A, Kaissis, G, Szeskin, A, Jacobs, C, Mamani, G E H, Chartrand, G, Lohöfer, F, Holch, J W, Sommer, W, Hofmann, F, Hostettler, A, Lev-Cohain, N, Drozdzal, M, Amitai, M M, Vivanti, R, Sosna, J, Ezhov, I, Sekuboyina, A, Navarro, F, Kofler, F, Paetzold, J C, Shit, S, Hu, X, Lipková, J, Rempfler, M, Piraud, M, Kirschke, J, Wiestler, B, Zhang, Z, Hülsemeyer, C, Beetz, M, Ettlinger, F, Antonelli, M, Bae, W, Bellver, M, Bi, L, Chen, H, Chlebus, G, Dam, E B, Dou, Q, Fu, C-W, Georgescu, B, Giró-I-Nieto, X, Gruen, F, Han, X, Heng, P-A, Hesser, J, Moltz, J H, Igel, C, Isensee, F, Jäger, P, Jia, F, Kaluva, K C, Khened, M, Kim, I, Kim, J-H, Kim, S, Kohl, S, Konopczynski, T, Kori, A, Krishnamurthi, G, Li, F, Li, H, Li, J, Li, X, Lowengrub, J, Ma, J, Maier-Hein, K, Maninis, K-K, Meine, H, Merhof, D, Pai, A, Perslev, M, Petersen, J, Pont-Tuset, J, Qi, J, Qi, X, Rippel, O, Roth, K, Sarasua, I, Schenk, A, Shen, Z, Torres, J, Wachinger, C, Wang, C, Weninger, L, Wu, J, Xu, D, Yang, X, Yu, S C-H, Yuan, Y, Yue, M, Zhang, L, Cardoso, J, Bakas, S, Braren, R, Heinemann, V, Pal, C, Tang, A, Kadoury, S, Soler, L, van Ginneken, B, Greenspan, H, Joskowicz, L & Menze, B 2023, ' The Liver Tumor Segmentation Benchmark (LiTS) ', Medical Image Analysis, vol. 84, 102680 . https://doi.org/10.1016/j.media.2022.102680
Medical Image Analysis, 84
Bilic, P, Christ, P, Li, H B, Vorontsov, E, Ben-Cohen, A, Kaissis, G, Szeskin, A, Jacobs, C, Mamani, G E H, Chartrand, G, Lohöfer, F, Holch, J W, Sommer, W, Hofmann, F, Hostettler, A, Lev-Cohain, N, Drozdzal, M, Amitai, M M, Vivanti, R, Sosna, J, Ezhov, I, Sekuboyina, A, Navarro, F, Kofler, F, Paetzold, J C, Shit, S, Hu, X, Lipková, J, Rempfler, M, Piraud, M, Kirschke, J, Wiestler, B, Zhang, Z, Hülsemeyer, C, Beetz, M, Ettlinger, F, Antonelli, M, Bae, W, Bellver, M, Bi, L, Chen, H, Chlebus, G, Dam, E B, Dou, Q, Fu, C-W, Georgescu, B, Giró-I-Nieto, X, Gruen, F, Han, X, Heng, P-A, Hesser, J, Moltz, J H, Igel, C, Isensee, F, Jäger, P, Jia, F, Kaluva, K C, Khened, M, Kim, I, Kim, J-H, Kim, S, Kohl, S, Konopczynski, T, Kori, A, Krishnamurthi, G, Li, F, Li, H, Li, J, Li, X, Lowengrub, J, Ma, J, Maier-Hein, K, Maninis, K-K, Meine, H, Merhof, D, Pai, A, Perslev, M, Petersen, J, Pont-Tuset, J, Qi, J, Qi, X, Rippel, O, Roth, K, Sarasua, I, Schenk, A, Shen, Z, Torres, J, Wachinger, C, Wang, C, Weninger, L, Wu, J, Xu, D, Yang, X, Yu, S C-H, Yuan, Y, Yue, M, Zhang, L, Cardoso, J, Bakas, S, Braren, R, Heinemann, V, Pal, C, Tang, A, Kadoury, S, Soler, L, van Ginneken, B, Greenspan, H, Joskowicz, L & Menze, B 2023, ' The Liver Tumor Segmentation Benchmark (LiTS) ', Medical Image Analysis, vol. 84, 102680 . https://doi.org/10.1016/j.media.2022.102680
In this work, we report the set-up and results of the Liver Tumor Segmentation Benchmark (LiTS), which was organized in conjunction with the IEEE International Symposium on Biomedical Imaging (ISBI) 2017 and the International Conferences on Medical I
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e22b7afec9cac0b49d2cb615d2787280
https://push-zb.helmholtz-muenchen.de/frontdoor.php?source_opus=67003
https://push-zb.helmholtz-muenchen.de/frontdoor.php?source_opus=67003
Publikováno v:
Radiology. 290:590-606
Deep learning has rapidly advanced in various fields within the past few years and has recently gained particular attention in the radiology community. This article provides an introduction to deep learning technology and presents the stages that are
Autor:
Hayit Greenspan, Stephen P. Raskin, Avi Ben-Cohen, Simona Ben-Haim, Eyal Klang, Shelly Soffer, Michal Amitai, Eli Konen
Publikováno v:
Engineering Applications of Artificial Intelligence. 78:186-194
In this work we present a novel system for generation of virtual PET images using CT scans. We combine a fully convolutional network (FCN) with a conditional generative adversarial network (GAN) to generate simulated PET data from given input CT data
Publikováno v:
ICMR
The task of person re-identification (ReID) has attracted growing attention in recent years leading to improved performance, albeit with little focus on real-world applications. Most SotA methods are based on heavy pre-trained models, e.g. ResNet50 (
Autor:
Hayit Greenspan, Avi Ben-Cohen
Publikováno v:
Handbook of Medical Image Computing and Computer Assisted Intervention ISBN: 9780128161760
Computer aided diagnosis (CAD) tools have the potential to support the radiologists in detection and can lead to improved diagnosis. This chapter presents deep learning based techniques for automated liver lesion analysis in computed tomography (CT)
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::a7ba6d01e08bbab3edb2ced08de23b88
https://doi.org/10.1016/b978-0-12-816176-0.00008-9
https://doi.org/10.1016/b978-0-12-816176-0.00008-9
Autor:
Yonathan Vaknin, Niharendu Mahapatra, Avi Ben-Cohen, Klimentiy Shimanovich, Yossi Rosenwaks, Joseph Hayon, Alex Henning, Hayit Greenspan
Publikováno v:
ACS Sensors. 3:709-715
For the past several decades, there is growing demand for the development of low-power gas sensing technology for the selective detection of volatile organic compounds (VOCs), important for monitoring safety, pollution, and healthcare. Here we report
Publikováno v:
Neurocomputing. 275:1585-1594
In this work we focus on liver metastases detection in computed tomography (CT) examinations, using both a global context with a fully convolutional network (FCN), and a local patch level analysis with superpixel sparse based classification. The task
Publikováno v:
Machine Learning for Medical Image Reconstruction ISBN: 9783030001285
MLMIR@MICCAI
MLMIR@MICCAI
Modeling and reconstructing the shape of a heart chamber from partial or noisy data is useful in many (minimally) invasive heart procedures. We propose a method to reconstruct the shape of the left atria during the electrophysiology procedure from a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::b87ccab157d52932007e58208ab3500a
https://doi.org/10.1007/978-3-030-00129-2_16
https://doi.org/10.1007/978-3-030-00129-2_16
Publikováno v:
ISBI
In this work we propose a method for anatomical data augmentation that is based on using slices of computed tomography (CT) examinations that are adjacent to labeled slices as another resource of labeled data for training the network. The extended la
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::94b0b9335ebc7e1b960dbc293c6ea934
Publikováno v:
EMBC
Training data is the key component in designing algorithms for medical image analysis and in many cases it is the main bottleneck in achieving good results. Recent progress in image generation has enabled the training of neural network based solution
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b92a9d9d5899c827135364c3d51f0ac9