Zobrazeno 1 - 10
of 12
pro vyhledávání: '"Avgust Karlovich Tsikh"'
Autor:
Fedor Alekseevich Bogomolov, Sergey Olegovich Gorchinskiy, Alexander Borisovich Zheglov, Viacheslav Valentinovich Nikulin, Dmitri Olegovich Orlov, Denis Vasilievich Osipov, Alexey Nikolaevich Parshin, Vladimir Leonidovich Popov, Victor Vladimirovich Przyjalkowski, Yuri Gennadievich Prokhorov, Miles Anthony Reid, Armen Glebovich Sergeev, Dmitry Valerevich Treschev, Avgust Karlovich Tsikh, Ivan Anatol'evich Cheltsov, Evgenii Mikhailovich Chirka
Publikováno v:
Russian Mathematical Surveys. 77:555-557
Autor:
Fedor Alekseevich Bogomolov, Фeдор Алексеевич Богомолов, Sergey Olegovich Gorchinskiy, Alexander Borisovich Zheglov, Viacheslav Valentinovich Nikulin, Dmitri Olegovich Orlov, Denis Vasilievich Osipov, Alexey Nikolaevich Parshin, Vladimir Leonidovich Popov, Victor Vladimirovich Przyjalkowski, Yuri Gennadievich Prokhorov, Miles Anthony Reid, Armen Glebovich Sergeev, Dmitry Valerevich Treschev, Avgust Karlovich Tsikh, Ivan Anatol'evich Cheltsov, Evgenii Mikhailovich Chirka
Publikováno v:
Uspekhi Matematicheskikh Nauk. 77:179-181
Publikováno v:
Journal of Siberian Federal University. Mathematics & Physics. 11:670-679
Publikováno v:
Sbornik: Mathematics. 209:1419-1444
Publikováno v:
Математический сборник. 209:3-30
Autor:
Stefan Yurievich Nemirovski, Avgust Karlovich Tsikh, Nikolai Georgievich Kruzhilin, P. V. Paramonov, Sergey Pavlovich Suetin, Vladimir Antonovich Zorich, Viktor Ivanovich Buslaev, Victor Vladimirovich Goryainov, Sergey Pinchuk, Vladimir Nikolaevich Dubinin, Konstantin Yurievich Fedorovskiy, Azimbay Sadullaev, Armen Sergeev, Alexandre Sukhov, Stepan Yur'evich Orevkov, Valerii Konstantinovich Beloshapka, Alexander Ivanovich Aptekarev
Publikováno v:
Uspekhi Matematicheskikh Nauk. 73:204-210
Publikováno v:
Математический сборник. 206:119-148
Publikováno v:
Izvestiya: Mathematics. 76:881-906
We consider a system of algebraic equations in variables, where the exponents of the monomials in each equation are fixed while all the coefficients vary. The discriminant locus of such a system is the closure of the set of all coefficients for which
Publikováno v:
Известия Российской академии наук. Серия математическая. 76:29-56
Publikováno v:
Математический сборник. 199:87-104