Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Avery, Chloe I."'
Autor:
Bramburger, Jason J., Altschuler, Dylan, Avery, Chloe I., Sangsawan, Tharathep, Beck, Margaret, Carter, Paul, Sandstede, Bjorn
Localized roll patterns are structures that exhibit a spatially periodic profile in their center. When following such patterns in a system parameter in one space dimension, the length of the spatial interval over which these patterns resemble a perio
Externí odkaz:
http://arxiv.org/abs/2203.11345
Autor:
Avery, Chloe I., Chen, Lvzhou
The stable torsion length in a group is the stable word length with respect to the set of all torsion elements. We show that the stable torsion length vanishes in crystallographic groups. We then give a linear programming algorithm to compute a lower
Externí odkaz:
http://arxiv.org/abs/2103.14116
We find necessary and sufficient conditions for a complete local ring to be the completion of a noncatenary local (Noetherian) domain, as well as necessary and sufficient conditions for it to be the completion of a noncatenary local (Noetherian) uniq
Externí odkaz:
http://arxiv.org/abs/1709.03825
Publikováno v:
In Journal of Algebra 15 April 2019 524:1-18
Autor:
Avery, Chloe I, Chen, Lvzhou
Publikováno v:
IMRN: International Mathematics Research Notices; Aug2023, Vol. 2023 Issue 16, p13817-13866, 50p
Autor:
Avery, Chloe I., Chen, Lvzhou
Publikováno v:
International Mathematics Research Notices.
The stable torsion length in a group is the stable word length with respect to the set of all torsion elements. We show that the stable torsion length vanishes in crystallographic groups. We then give a linear programming algorithm to compute a lower
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.