Zobrazeno 1 - 10
of 1 116
pro vyhledávání: '"Averaging theory"'
Limit cycle bifurcation from a zero-Hopf equilibrium for a class of 3-dimensional Kolmogorov systems
Publikováno v:
Partial Differential Equations in Applied Mathematics, Vol 11, Iss , Pp 100810- (2024)
A zero-Hopf equilibrium point p of a 3-dimensional autonomous differential system in R3 is an equilibrium point such that the eigenvalues of the linear part of the system at p are 0 and ±ωi with ω≠0. A zero-Hopf bifurcation takes place when from
Externí odkaz:
https://doaj.org/article/cc8c0b70ffe2446bbe885f1712ca16ed
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Nabil Rezaiki, Amel Boulfoul
Publikováno v:
Journal of Innovative Applied Mathematics and Computational Sciences, Vol 4, Iss 1 (2024)
In this paper, we study the existence of periodic solutions for the following piecewise third-order differential equation: $$ \dddot{x}+\dot{x}-\varepsilon\sum\limits_{i=1}^{2}c_i|x|^i=0, $$ with $\varepsilon$ a real parameter sufficiently small, $c_
Externí odkaz:
https://doaj.org/article/05d37eb20596473b85ee43b55a7c7979
Publikováno v:
Electronic Journal of Qualitative Theory of Differential Equations, Vol 2023, Iss 49, Pp 1-26 (2023)
In this paper, we study the bifurcation of limit cycles from a class of cubic integrable non-Hamiltonian systems under arbitrarily small piecewise smooth perturbations of degree $n$. By using the averaging theory and complex method, the lower and upp
Externí odkaz:
https://doaj.org/article/4514863449ce4fdf874909c4ae227b8a
Autor:
Tabet Achref Eddine, Makhlouf Amar
Publikováno v:
Nonautonomous Dynamical Systems, Vol 10, Iss 1, Pp 103-111 (2023)
In this article, we provide sufficient conditions for the existence of periodic solutions for the polynomial differential system of the form x˙=−y+εP1(x,y,z,u,v)+h1(t),y˙=x+εP2(x,y,z,u,v)+h2(t),z˙=−u+εP3(x,y,z,u,v)+h3(t),u˙=z+εP4(x,y,z,u,
Externí odkaz:
https://doaj.org/article/722bf236315d4e658856930612eca934
Publikováno v:
Applied Mathematics and Nonlinear Sciences, Vol 8, Iss 2, Pp 2251-2260 (2023)
The aim of this work is to study the existence of zero-Hopf bifurcations of a new hyperchaotic system, using the averaging theory of dynamical systems of second order. Furthermore, at most one periodic orbit can bifurcate from the origin of coordinat
Externí odkaz:
https://doaj.org/article/1d778de909584126a2da77ea3240c48c
Publikováno v:
Applied Mathematics and Nonlinear Sciences, Vol 9, Iss 1 (2024)
We study the maximum number of limit cycles which bifurcate from the periodic orbits of the linear centre ̇x = y, ̇y = −x, when it is perturbed in the form x˙=y-ɛ(1+coslθ)P(x,y), y˙=-x-ɛ(1+cosmθ)Q(x,y),\dot x = y - \varepsilon \left( {1 + {
Externí odkaz:
https://doaj.org/article/d870e8ff1195449aaed071c891fbd68c
Publikováno v:
Arab Journal of Mathematical Sciences, 2022, Vol. 29, Issue 1, pp. 2-13.
Externí odkaz:
http://www.emeraldinsight.com/doi/10.1108/AJMS-07-2020-0024