Zobrazeno 1 - 10
of 33
pro vyhledávání: '"Automatic feature engineering"'
Publikováno v:
IEEE Access, Vol 12, Pp 106447-106454 (2024)
Due to the sheer volume and variety of data in industrial manufacturing, manually creating features can be costly. Therefore, appropriate feature processing methods become crucial. Most existing feature processing methods abstract feature engineering
Externí odkaz:
https://doaj.org/article/580026dfa49e44358edfb4ef55664399
Autor:
Rana Alasmari, Areej Abdullah Alhogail
Publikováno v:
IEEE Access, Vol 12, Pp 25993-26004 (2024)
Smart homes are becoming increasingly popular worldwide, and they are mainly based on Internet of Things (IoT) technologies to enable their functionality. However, because IoT devices have limited computing power and resources, implementing strong se
Externí odkaz:
https://doaj.org/article/2a49cdc07eb74cf584e5ab5679b29c96
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Alexandre Moreira Nascimento, Vinicius Veloso de Melo, Anna Carolina Muller Queiroz, Thomas Brashear-Alejandro, Fernando de Souza Meirelles
Publikováno v:
Revista de Contabilidade e Organizações, Vol 14 (2020)
The purpose of this study is to develop a predictive model that increases the accuracy of business operational planning using data from a small business. By using Machine Learning (ML) techniques feature expansion, resampling, and combination techniq
Externí odkaz:
https://doaj.org/article/ab4c3e5b65a94a9eb1dbf76b649a99fd
Publikováno v:
Symmetry, Vol 13, Iss 9, p 1557 (2021)
To beat competition and obtain valuable information, decision-makers must conduct in-depth machine learning or data mining for data analytics. Traditionally, clustering and classification are two common methods used in machine mining. For clustering,
Externí odkaz:
https://doaj.org/article/08f2380a866346abb7a1b07ffd69d1db
Publikováno v:
Symmetry, Vol 13, Iss 1557, p 1557 (2021)
Symmetry
Volume 13
Issue 9
Symmetry
Volume 13
Issue 9
To beat competition and obtain valuable information, decision-makers must conduct in-depth machine learning or data mining for data analytics. Traditionally, clustering and classification are two common methods used in machine mining. For clustering,
Autor:
Nascimento, Alexandre Moreira, de Melo, Vinicius Veloso, Muller Queiroz, Anna Carolina, Brashear-Alejandro, Thomas, Meirelles, Fernando de Souza
Publikováno v:
Revista de Contabilidade e Organizações; Vol. 14 (2020); e171481
Revista de Contabilidade e Organizações; v. 14 (2020); e171481
Revista de contabilidade e organizações
Universidade de São Paulo (USP)
instacron:USP
Revista de Contabilidade e Organizações; v. 14 (2020); e171481
Revista de contabilidade e organizações
Universidade de São Paulo (USP)
instacron:USP
The purpose of this study is to develop a predictive model that increases the accuracy of business operational planning using data from a small business. By using Machine Learning (ML) techniques feature expansion, resampling, and combination techniq
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______3056::f80487806b6e742a92daa042784f3d96
https://www.revistas.usp.br/rco/article/view/171481
https://www.revistas.usp.br/rco/article/view/171481
Autor:
Thomas Brashear-Alejandro, Anna Carolina Muller Queiroz, Vinícius Veloso de Melo, Alexandre Moreira Nascimento, Fernando de Souza Meirelles
Publikováno v:
Revista de Contabilidade e Organizações, Vol 14 (2020)
O objetivo deste estudo e desenvolver um modelo preditivo que aumente a precisao do planejamento operacional de negocios usando dados de uma pequena empresa. A partir de tecnicas de aprendizado de maquina (AM), sao apresentadas estrategias de expansa