Zobrazeno 1 - 10
of 28
pro vyhledávání: '"Autoimplant"'
Autor:
Stefano Mazzocchetti, Mirko Bevini, Giovanni Badiali, Giuseppe Lisanti, Luigi Di Stefano, Samuele Salti
Publikováno v:
IEEE Access, Vol 12, Pp 95185-95195 (2024)
The design of patient-specific implants for cranioplasty surgery is time-consuming and challenging. Hence, the 2021 AutoImplant II challenge, consisting of the SkullBreak and SkullFix datasets, was organized to foster research on computer vision tech
Externí odkaz:
https://doaj.org/article/0f60f5d6e9a444c5bf9a78c67cee846c
Autor:
Thathapatt Kesornsri, Napasara Asawalertsak, Natdanai Tantisereepatana, Pornnapas Manowongpichate, Boonrat Lohwongwatana, Chedtha Puncreobutr, Titipat Achakulvisut, Peerapon Vateekul
Publikováno v:
IEEE Access, Vol 12, Pp 84907-84922 (2024)
Automatic cranial implant design aims to design a patient-specific implant where various machine-learning-based skull reconstruction techniques have been introduced to predict the implant. Despite the significant progress made in the previous researc
Externí odkaz:
https://doaj.org/article/fd9eca152aa74427aab552eb4d1affd2
Autor:
Oldřich Kodym, Jianning Li, Antonio Pepe, Christina Gsaxner, Sasank Chilamkurthy, Jan Egger, Michal Španěl
Publikováno v:
Data in Brief, Vol 35, Iss , Pp 106902- (2021)
The article introduces two complementary datasets intended for the development of data-driven solutions for cranial implant design, which remains to be a time-consuming and laborious task in current clinical routine of cranioplasty. The two datasets,
Externí odkaz:
https://doaj.org/article/69cab2db2def4525b0abad1b4dbdad41
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Ute Schäfer, Gord von Campe, Yuan Jin, Hans Lamecker, Bomin Wang, Michal Spanel, Christian Doenitz, Heiko Ramm, Ulrike Zefferer, Matthias Josef Eder, Pedro Pimentel, Angelika Szengel, Adam Herout, Victor Alves, Oldřich Kodym, Franco Matzkin, Jan Egger, Moritz Ehlke, Zachary Fishman, James G. Mainprize, Ben Glocker, Stefan Zachow, Jianning Li, Virginia F. J. Newcombe, David G. Ellis, Dieter Schmalstieg, Haochen Shi, Enzo Ferrante, Karin Pistracher, Zhi Liu, Antonio Pepe, Bjoern H. Menze, Michele R. Aizenberg, Amirhossein Bayat, Christina Gsaxner, Suprosanna Shit, Michael Hardisty, Laura Estacio, Xiaojun Chen
Publikováno v:
IEEE transactions on medical imaging. 40(9)
The aim of this paper is to provide a comprehensive overview of the MICCAI 2020 AutoImplant Challenge. The approaches and publications submitted and accepted within the challenge will be summarized and reported, highlighting common algorithmic trends
Publikováno v:
Towards the Automatization of Cranial Implant Design in Cranioplasty II ISBN: 9783030926519
The development of automatic skull reconstruction methods has dramatically reduced the time and expense to repair skull defects. In this study, an ensemble-learning-based method is proposed for skull implant prediction. To overcome the potential over
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::1340b9fc81b181437e0ae5614326badf
https://doi.org/10.1007/978-3-030-92652-6_8
https://doi.org/10.1007/978-3-030-92652-6_8
Autor:
Jan Egger, Jianning Li
Publikováno v:
Towards the Automatization of Cranial Implant Design in Cranioplasty ISBN: 9783030643263
AutoImplant@MICCAI
AutoImplant@MICCAI
This data descriptor elaborates on a dataset that can be used for the development of automatic, data-driven approaches for cranial implant design, which is a challenging task in cranioplasty. The dataset includes 210 complete skulls as well as their
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::97fe369e63523a4238b2460c59f71594
https://doi.org/10.1007/978-3-030-64327-0_2
https://doi.org/10.1007/978-3-030-64327-0_2
Autor:
Jan Egger, Jianning Li
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783030643263
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::2b3863aceb5ed847a9485695691b63fb
https://doi.org/10.1007/978-3-030-64327-0
https://doi.org/10.1007/978-3-030-64327-0