Zobrazeno 1 - 10
of 38
pro vyhledávání: '"Aurélien Decelle"'
Publikováno v:
SciPost Physics, Vol 16, Iss 4, p 095 (2024)
Generative models offer a direct way of modeling complex data. Energy-based models attempt to encode the statistical correlations observed in the data at the level of the Boltzmann weight associated with an energy function in the form of a neural net
Externí odkaz:
https://doaj.org/article/abc391adb5714d18be2c12a505d8015d
Autor:
Burak Yelmen, Aurélien Decelle, Leila Lea Boulos, Antoine Szatkownik, Cyril Furtlehner, Guillaume Charpiat, Flora Jay
Publikováno v:
PLoS Computational Biology, Vol 19, Iss 10, p e1011584 (2023)
Applications of generative models for genomic data have gained significant momentum in the past few years, with scopes ranging from data characterization to generation of genomic segments and functional sequences. In our previous study, we demonstrat
Externí odkaz:
https://doaj.org/article/dde2f445990c43898e5886eb5b1f36e0
Autor:
Burak Yelmen, Aurélien Decelle, Linda Ongaro, Davide Marnetto, Corentin Tallec, Francesco Montinaro, Cyril Furtlehner, Luca Pagani, Flora Jay
Publikováno v:
PLoS Genetics, Vol 17, Iss 2, p e1009303 (2021)
Generative models have shown breakthroughs in a wide spectrum of domains due to recent advancements in machine learning algorithms and increased computational power. Despite these impressive achievements, the ability of generative models to create re
Externí odkaz:
https://doaj.org/article/26fab8b8ed544e6ba6fddb07b388dbde
Publikováno v:
Journal of Physics A: Mathematical and Theoretical. 56:205005
In this paper we investigate the equilibrium properties of bidirectional associative memories (BAMs). Introduced by Kosko in 1988 as a generalization of the Hopfield model to a bipartite structure, the simplest architecture is defined by two layers o
Publikováno v:
IEEE Transactions on Pattern Analysis and Machine Intelligence
IEEE Transactions on Pattern Analysis and Machine Intelligence, Institute of Electrical and Electronics Engineers, 2021, pp.1-1. ⟨10.1109/TPAMI.2021.3124973⟩
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, pp.1-1. ⟨10.1109/TPAMI.2021.3124973⟩
IEEE Transactions on Pattern Analysis and Machine Intelligence, Institute of Electrical and Electronics Engineers, 2021, pp.1-1. ⟨10.1109/TPAMI.2021.3124973⟩
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, pp.1-1. ⟨10.1109/TPAMI.2021.3124973⟩
A regularized version of Mixture Models is proposed to learn a principal graph from a distribution of $D$-dimensional data points. In the particular case of manifold learning for ridge detection, we assume that the underlying manifold can be modeled
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::346800e23caa0f2b0958fd45786863e3
https://hal.archives-ouvertes.fr/hal-03477742
https://hal.archives-ouvertes.fr/hal-03477742
Publikováno v:
Scientific Reports
Scientific Reports, Vol 11, Iss 1, Pp 1-13 (2021)
Scientific Reports, Vol 11, Iss 1, Pp 1-13 (2021)
We propose an efficient algorithm to solve inverse problems in the presence of binary clustered datasets. We consider the paradigmatic Hopfield model in a teacher student scenario, where this situation is found in the retrieval phase. This problem ha
Autor:
Aurélien Decelle
Publikováno v:
Physica A: Statistical Mechanics and its Applications. :128154
Autor:
Cyril Furtlehner, Aurélien Decelle
Publikováno v:
Physical Review Letters
Physical Review Letters, American Physical Society, 2021
Physical Review Letters, 2021
Physical Review Letters, American Physical Society, 2021
Physical Review Letters, 2021
The restricted Boltzmann machine is a basic machine learning tool able, in principle, to model the distribution of some arbitrary dataset. Its standard training procedure appears however delicate and obscure in many respects. We bring some new insigh
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b6798fd58fb5e08db98160d98f29f6a5
Autor:
Aurélien Decelle, Davide Marnetto, Luca Pagani, Linda Ongaro, Burak Yelmen, Francesco Montinaro, Cyril Furtlehner, Corentin Tallec, Flora Jay
Publikováno v:
PLoS Genetics
PLoS Genetics, Public Library of Science, 2021, ⟨10.1371/journal.pgen.1009303⟩
PLoS Genetics, Vol 17, Iss 2, p e1009303 (2021)
PLoS Genetics, 2021, ⟨10.1371/journal.pgen.1009303⟩
PLoS Genetics, Public Library of Science, 2021, ⟨10.1371/journal.pgen.1009303⟩
PLoS Genetics, Vol 17, Iss 2, p e1009303 (2021)
PLoS Genetics, 2021, ⟨10.1371/journal.pgen.1009303⟩
Generative models have shown breakthroughs in a wide spectrum of domains due to recent advancements in machine learning algorithms and increased computational power. Despite these impressive achievements, the ability of generative models to create re
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6ca588c55f6037c093a0655064e02bcf
http://hdl.handle.net/11577/3376932
http://hdl.handle.net/11577/3376932
Autor:
Aurélien Decelle, Cyril Furtlehner
Publikováno v:
Chinese Physics B
Chinese Physics B, IOP Publishing, 2020, ⟨10.1088/1674-1056/abd160⟩
Chinese Physics B, 2020, ⟨10.1088/1674-1056/abd160⟩
Chinese Physics B, IOP Publishing, 2020, ⟨10.1088/1674-1056/abd160⟩
Chinese Physics B, 2020, ⟨10.1088/1674-1056/abd160⟩
This review deals with Restricted Boltzmann Machine (RBM) under the light of statistical physics. The RBM is a classical family of Machine learning (ML) models which played a central role in the development of deep learning. Viewing it as a Spin Glas
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5f5af9e444d602d248292592a4f3a7f2
https://hal.archives-ouvertes.fr/hal-03143314/file/Decelle+et+al_2020_Chinese_Phys._B_10.1088_1674-1056_abd160.pdf
https://hal.archives-ouvertes.fr/hal-03143314/file/Decelle+et+al_2020_Chinese_Phys._B_10.1088_1674-1056_abd160.pdf