Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Aurélie Boisbunon"'
Autor:
Aurélie Boisbunon, Jonathan Daeden, Carlo Fanara, Marc Schoenauer, Ingrid Grenet, Alexis Vighi
Publikováno v:
GECCO
GECCO 2021
GECCO 2021, ACM, Jul 2021, Lille, France. pp.776-784
GECCO 2021
GECCO 2021, ACM, Jul 2021, Lille, France. pp.776-784
International audience; The Zoetrope Genetic Programming (ZGP) algorithm is based on an original representation for mathematical expressions, targeting evolutionary symbolic regression. The zoetropic representation uses repeated fusion operations bet
Publikováno v:
Learning and Intelligent Optimization (LION 2021)
Learning and Intelligent Optimization (LION 2021), Jun 2021, Athens, Greece. pp.25-39, ⟨10.1007/978-3-030-92121-7_3⟩
LION 2021-15th Learning and Intelligent Optimization Conference
LION 2021-15th Learning and Intelligent Optimization Conference, Jun 2021, Athens, Greece. pp.25-39, ⟨10.1007/978-3-030-92121-7_3⟩
Lecture Notes in Computer Science ISBN: 9783030921200
Learning and Intelligent Optimization (LION 2021), Jun 2021, Athens, Greece. pp.25-39, ⟨10.1007/978-3-030-92121-7_3⟩
LION 2021-15th Learning and Intelligent Optimization Conference
LION 2021-15th Learning and Intelligent Optimization Conference, Jun 2021, Athens, Greece. pp.25-39, ⟨10.1007/978-3-030-92121-7_3⟩
Lecture Notes in Computer Science ISBN: 9783030921200
International audience; A novel framework called Graph Diffusion & PCA (GDPCA) is proposed in the context of semi-supervised learning on graph structured data. It combines a modified Principal Component Analysis with the classical supervised loss and
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::439665a61673861d7d06720e5c813958
https://hal.inria.fr/hal-03477308/file/LION2021_author_version.pdf
https://hal.inria.fr/hal-03477308/file/LION2021_author_version.pdf
Autor:
Dominique Fourdrinier, Martin T. Wells, Stéphane Canu, William E. Strawderman, Aurélie Boisbunon
Publikováno v:
International Statistical Review. 82:422-439
Summary In this article, we develop a modern perspective on Akaike's information criterion and Mallows's Cp for model selection, and propose generalisations to spherically and elliptically symmetric distributions. Despite the differences in their res
Autor:
Yuzo Maruyama, Aurélie Boisbunon
Publikováno v:
Biometrika. 101:733-740
In this work, we are concerned with the estimation of the predictive density of a Gaussian random vector where both the mean and the variance are unknown. In such a context, we prove the inadmissibility of the best equivariant predictive density unde
Publikováno v:
MLSP-24th IEEE Workshop on Machine Learning for Signal Processing
MLSP-24th IEEE Workshop on Machine Learning for Signal Processing, Sep 2014, Reims, France
HAL
MLSP-24th IEEE Workshop on Machine Learning for Signal Processing, Sep 2014, Reims, France
HAL
International audience; In this work, we address the problem of detecting objects in images by expressing the image as convolutions between activation matrices and dictionary atoms. The activation matrices are estimated through sparse optimization an
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8904490de1487369b147a55e10281740
https://inria.hal.science/hal-01066235/document
https://inria.hal.science/hal-01066235/document
Autor:
Aurélie Boisbunon, Josiane Zerubia
Publikováno v:
EUSIPCO-22nd European Signal Processing Conference
EUSIPCO-22nd European Signal Processing Conference, Sep 2014, Lisbonne, Portugal
HAL
EUSIPCO-22nd European Signal Processing Conference, Sep 2014, Lisbonne, Portugal
HAL
International audience; We consider the problem of estimating one of the parameters of a marked point process, namely the tradeoff parameter between the data and prior energy terms defining the probability density of the process. In previous work, th
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::001f5aad6b1f4c58fe8793bc626ac5a7
https://inria.hal.science/hal-01066232
https://inria.hal.science/hal-01066232
Publikováno v:
ICASSP-IEEE International Conference on Acoustics Speech and Signal Processing
ICASSP-IEEE International Conference on Acoustics Speech and Signal Processing, May 2014, Florence, Italy
ICASSP
ICASSP-IEEE International Conference on Acoustics Speech and Signal Processing, May 2014, Florence, Italy
ICASSP
International audience; The use of non-convex sparse regularization has attracted much interest when estimating a very sparse model on high dimensional data. In this work we express the optimality conditions of the optimization problem for a large cl
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0d149d74c3e41cd4fe9e9531ebd7a274
https://inria.hal.science/hal-01025585/document
https://inria.hal.science/hal-01025585/document