Zobrazeno 1 - 10
of 108
pro vyhledávání: '"Augusto C. Ponce"'
Autor:
Augusto C. Ponce, Daniel Spector
Publikováno v:
Potentials and Partial Differential Equations ISBN: 9783110792720
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::d8c90b72e1c2276a1e14dd175ef707eb
https://doi.org/10.1515/9783110792720-011
https://doi.org/10.1515/9783110792720-011
Autor:
Daniel Spector, Augusto C. Ponce
Publikováno v:
Scuola Normale Superiore di Pisa. Annali. Classe di Scienze, Vol. 20, p. 107–141 (2020)
We prove the Boxing inequality: $$\mathcal{H}^{d-\alpha}_\infty(U) \leq C\alpha(1-\alpha)\int_U \int_{\mathbb{R}^{d} \setminus U} \frac{\mathrm{d}y \, \mathrm{d}z}{|y-z|^{\alpha+d}},$$ for every $\alpha \in (0,1)$ and every bounded open subset $U \su
Autor:
Daniel Spector, Augusto C. Ponce
Publikováno v:
Indiana University Mathematics Journal. 69:151-169
Publikováno v:
Confluentes Mathematici. 5:3-24
Given a compact manifold $N^n subset mathbb{R}^u$ and real numbers $s ge 1$ and $1 le p < infty$, we prove that the class $C^infty(overline{Q}^m; N^n)$ of smooth maps on the cube with values into $N^n$ is strongly dense in the fractional Sobolev spac
Autor:
Augusto C. Ponce, Luigi Orsina
Publikováno v:
Journal de mathématiques pures et appliquées, Vol. 134, p. 72–121 (2020)
Given any Borel function \(V : \Omega \to [0, +\infty]\) on a smooth bounded domain \(\Omega \subset \mathbb{R}^{N}\), we establish that the strong maximum principle for the Schrödinger operator \(-\Delta + V\) in \(\Omega\) holds in each Sobolev-co
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4f09d0d07c170ae7d0fc261ae15a4ec1
https://hdl.handle.net/2078.1/216690
https://hdl.handle.net/2078.1/216690
Autor:
Nicolas Wilmet, Augusto C. Ponce
Publikováno v:
Advanced Nonlinear Studies, Vol. 10, no.2, p. 459–475 (2020)
We prove the Hopf boundary point lemma for solutions of the Dirichlet problem involving the Schrödinger operator - Δ + V {-\Delta+V} with a nonnegative potential V which merely belongs to L loc 1 ( Ω ) {L_{\mathrm{loc}}^{1}(\Omega)} . More pre
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2b3a30cbeac042039fa7a73a3576d9fc
https://hdl.handle.net/2078.1/235057
https://hdl.handle.net/2078.1/235057
Autor:
Augusto C. Ponce, Luigi Orsina
Publikováno v:
Annales de l'Institut Henri Poincaré-C-Non Linear Analysis, Vol. 33, no. 2, p. 477-493 (2016)
We prove that for every $p > 1$ and for every potential $V \in L^p$, any nonnegative function satisfying $-\Delta u + V u \ge 0$ in an open connected set of $\mathbb{R}^N$ is either identically zero or its level set $\{u = 0\}$ has zero $W^{2, p}$ ca
Publikováno v:
Comptes Rendus Mathematique, Vol. 356, no. 3, p. 264-271 (2018)
Comptes Rendus. Mathématique
Comptes Rendus. Mathématique, Académie des sciences (Paris), 2018, 356 (3), pp.264-271. ⟨10.1016/j.crma.2018.01.017⟩
Comptes rendus de l'Académie des sciences. Série I, Mathématique
Comptes rendus de l'Académie des sciences. Série I, Mathématique, Elsevier, 2018
Comptes Rendus. Mathématique, 2018, 356 (3), pp.264-271. ⟨10.1016/j.crma.2018.01.017⟩
Comptes Rendus. Mathématique
Comptes Rendus. Mathématique, Académie des sciences (Paris), 2018, 356 (3), pp.264-271. ⟨10.1016/j.crma.2018.01.017⟩
Comptes rendus de l'Académie des sciences. Série I, Mathématique
Comptes rendus de l'Académie des sciences. Série I, Mathématique, Elsevier, 2018
Comptes Rendus. Mathématique, 2018, 356 (3), pp.264-271. ⟨10.1016/j.crma.2018.01.017⟩
We have recently introduced the trimming property for a complete Riemannian manifold as a necessary and sufficient condition for bounded maps to be strongly dense in when . We prove in this note that, even under a weaker notion of approximation, name
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::440a113906268497ae2ab1ca7824b574
https://hdl.handle.net/2078.1/196135
https://hdl.handle.net/2078.1/196135
Publikováno v:
Revista Matematica Iberoamericana, Vol. 36, no. 7, p. 2033–2072 (2020)
We establish that for every function $u \in L^1_\mathrm{loc}(\Omega)$ whose distributional Laplacian $\Delta u$ is a signed Borel measure in an open set $\Omega$ in $\mathbb{R}^{N}$, the distributional gradient $\nabla u$ is differentiable almost eve
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::768244e2ca8135ae086582e493db6b08
Autor:
Augusto C. Ponce, Luigi Orsina
Publikováno v:
Anal. PDE 11, no. 8 (2018), 2015-2047
Analysis & PDE, Vol. 11, no.8, p. 2015-2047
Analysis & PDE, Vol. 11, no.8, p. 2015-2047
We establish the Hopf boundary point lemma for the Schr\"odinger operator $-\Delta + V$ involving potentials $V$ that merely belong to the space $L^{1}_{loc}(\Omega)$. More precisely, we prove that among all supersolutions $u$ of $-\Delta + V$ which
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d46004888360761a8e106a3e1a976f7b
http://hdl.handle.net/11573/1114075
http://hdl.handle.net/11573/1114075