Zobrazeno 1 - 5
of 5
pro vyhledávání: '"Augustine, Athul"'
For a bounded linear operator $T$ acting on a reproducing kernel Hilbert space $\mathcal{H}(\Omega)$ over some non-empty set $\Omega$, the Berezin range and the Berezin radius of $T$ are defined respectively, by $\text{Ber}(T) := \{\langle T\hat{k}_{
Externí odkaz:
http://arxiv.org/abs/2411.10771
The Berezin range of a bounded operator $T$ acting on a reproducing kernel Hilbert space $\mathcal{H}$ is the set $B(T)$ := $\{\langle T\hat{k}_{x},\hat{k}_{x} \rangle_{\mathcal{H}} : x \in X\}$, where $\hat{k}_{x}$ is the normalized reproducing kern
Externí odkaz:
http://arxiv.org/abs/2401.03176
The Berezin range of a bounded operator $T$ acting on a reproducing kernel Hilbert space $\mathcal{H}$ is the set $\text{Ber}(T)$ := $\{\langle T\hat{k}_{x},\hat{k}_{x} \rangle_{\mathcal{H}} : x \in X\}$, where $\hat{k}_{x}$ is the normalized reprodu
Externí odkaz:
http://arxiv.org/abs/2302.12547
Autor:
Augustine, Athul, Shankar, P.
Let $n>1$ and let $\{U_{ij}\}_{1\leq i
Externí odkaz:
http://arxiv.org/abs/2211.07753
Autor:
Augustine, Athul, Shankar, P.
Berezin range of a bounded operator $T$ acting on a reproducing kernel Hilbert space $\mathcal{H}$ is the set $B(T)$ := $\{\langle T\hat{k}_{x},\hat{k}_{x} \rangle_{\mathcal{H}} : x \in X\}$, where $\hat{k}_{x}$ is the normalized reproducing kernel f
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9c358fda16b9ecdc44e888a33a153b4e
http://arxiv.org/abs/2302.12547
http://arxiv.org/abs/2302.12547