Zobrazeno 1 - 3
of 3
pro vyhledávání: '"Augustinas Sukys"'
Publikováno v:
iScience, Vol 25, Iss 9, Pp 105010- (2022)
Summary: The Chemical Master Equation (CME) provides an accurate description of stochastic biochemical reaction networks in well-mixed conditions, but it cannot be solved analytically for most systems of practical interest. Although Monte Carlo metho
Externí odkaz:
https://doaj.org/article/042e27c8cb8146ebb1d8b1da905489ad
Autor:
Ramon Grima, Augustinas Sukys
Publikováno v:
Sukys, A, Grima, R & Cowen, L (ed.) 2021, ' MomentClosure.jl : Automated moment closure approximations in Julia ', Bioinformatics, vol. 38, no. 1, btab469, pp. 289-290 . https://doi.org/10.1093/bioinformatics/btab469
Bioinformatics
Bioinformatics
MomentClosure.jl is a Julia package providing automated derivation of the time-evolution equations of the moments of molecule numbers for virtually any chemical reaction network using a wide range of moment closure approximations. It extends the capa
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e6e9f2f74ff2820372d6053e33a1ed20
https://www.pure.ed.ac.uk/ws/files/254450290/btab469.pdf
https://www.pure.ed.ac.uk/ws/files/254450290/btab469.pdf
Publikováno v:
Holehouse, J, Sukys, A & Grima, R 2020, ' Stochastic time-dependent enzyme kinetics : Closed-form solution and transient bimodality ', The Journal of Chemical Physics, vol. 153, no. 16, 164113 . https://doi.org/10.1063/5.0017573
We derive an approximate closed-form solution to the chemical master equation describing the Michaelis-Menten reaction mechanism of enzyme action. In particular, assuming that the probability of a complex dissociating into enzyme and substrate is sig