Zobrazeno 1 - 3
of 3
pro vyhledávání: '"Athena Shaminezhad"'
Autor:
Athena Shaminezhad, Ebrahim Vatandoost
Publikováno v:
Opuscula Mathematica, Vol 40, Iss 5, Pp 617-627 (2020)
Let \(G\) be a graph and \(f:V (G)\rightarrow P(\{1,2\})\) be a function where for every vertex \(v\in V(G)\), with \(f(v)=\emptyset\) we have \(\bigcup_{u\in N_{G}(v)} f(u)=\{1,2\}\). Then \(f\) is a \(2\)-rainbow dominating function or a \(2RDF\) o
Externí odkaz:
https://doaj.org/article/3e7f9579bc6848e8a3200fda4f65c4a2
Publikováno v:
Cogent Mathematics & Statistics, Vol 7, Iss 1 (2020)
Let $$G = (V(G),E(G))$$ be a graph and $$f:V(G) \to \{ 0,1,2\} $$ be a function where for every vertex $$v \in V(G)$$ with $$f(v) = 0,$$ there is a vertex $$u \in {N_G}(v),$$ where $$f(u) = 2.$$ Then $$f$$ is a Roman dominating function or a $$RDF$$
Publikováno v:
Advances in Intelligent Systems and Computing ISBN: 9783319665139
Let \(G=(V,E)\) be a graph. The function \(f:V(G)\rightarrow \{-1,1\}\) is a signed total dominating function if for every vertex \(v \in V(G)\), \(\sum _{x \in N_{G}(v)}f(x) \ge 1\). The value of \(\omega (f)=\sum _{x \in V(G)}f(x)\) is called the w
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::7853cb49da7748b8352c04c811d432f7
https://doi.org/10.1007/978-3-319-66514-6_11
https://doi.org/10.1007/978-3-319-66514-6_11