Zobrazeno 1 - 10
of 123
pro vyhledávání: '"Athanassios G. Kartsatos"'
Autor:
Zhou Haiyun, Athanassios G. Kartsatos
Publikováno v:
Abstract and Applied Analysis, Vol 2, Iss 3-4, Pp 197-205 (1997)
Various eigenvalue and range results are given for perturbations of m-accretive and maximal monotone operators. The eigenvalue results improve and extend some recent results by Guan and Kartsatos, while the range theorem gives an affirmative answer t
Externí odkaz:
https://doaj.org/article/1a81d1b14f3347b58c170056b8e7d49f
Publikováno v:
Advances in Nonlinear Dynamics ISBN: 9781315136875
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::df5f7f3c6d8037b77ba147c6508b7460
https://doi.org/10.1201/9781315136875-32
https://doi.org/10.1201/9781315136875-32
Publikováno v:
Applicable Analysis. 95:24-43
Let be a real reflexive Banach space with dual . Let be densely defined linear maximal monotone. Let be maximal monotone with and and bounded, demicontinuous and of type w.r.t. . An invariance of domain result is established for the sum . An eigenval
Publikováno v:
Nonlinear Analysis: Theory, Methods & Applications. 74:4622-4641
Let X be an infinite dimensional real reflexive Banach space with dual space X ∗ and G ⊂ X , open and bounded. Assume that X and X ∗ are locally uniformly convex. Let T : X ⊃ D ( T ) → 2 X ∗ be maximal monotone and strongly quasibounded,
A Browder degree theory from the Nagumo degree on the Hilbert space of elliptic super-regularization
Autor:
David Kerr, Athanassios G. Kartsatos
Publikováno v:
Nonlinear Analysis: Theory, Methods & Applications. 74:501-515
Let X be a real reflexive separable locally uniformly convex Banach space with locally uniformly convex dual space X ∗ . Let Q : H → X be a linear compact injection, according to Browder and Ton, such that Q ( H ) ¯ = X , where H is a real separ
Autor:
Athanassios G. Kartsatos
Publikováno v:
Nonlinear Analysis: Theory, Methods & Applications. 71:5509-5512
Let X be a real locally uniformly convex Banach space with normalized duality mapping J : X → 2 X ∗ . The purpose of this note is to show that for every R > 0 and every x 0 ∈ X there exists a function ϕ = ϕ ( R , x 0 ) : R + → R + , which i
Publikováno v:
Nonlinear Analysis: Theory, Methods & Applications. 70:4350-4368
The purpose of this paper is to demonstrate the fact that the topological degree theory of Leray and Schauder may be used for the development of the topological degree theory for bounded demicontinuous ( S + ) -perturbations f of strongly quasibounde
Publikováno v:
Journal of Mathematical Analysis and Applications. 348(1):122-136
Let X be a real reflexive Banach space with dual X ∗ . Let L : X ⊃ D ( L ) → X ∗ be densely defined, linear and maximal monotone. Let T : X ⊃ D ( T ) → 2 X ∗ , with 0 ∈ D ( T ) and 0 ∈ T ( 0 ) , be strongly quasibounded and maximal
Publikováno v:
Nonlinear Analysis: Theory, Methods & Applications. 69:2339-2354
Let X be a real reflexive separable locally uniformly convex Banach space with locally uniformly convex dual space X ∗ . Let T : X ⊃ D ( T ) → 2 X ∗ be maximal monotone, with 0 ∈ D ∘ ( T ) and 0 ∈ T ( 0 ) , and C : X ⊃ D ( C ) → X
Publikováno v:
Nonlinear Analysis: Theory, Methods & Applications. 69:1235-1255
Let X be a real Banach space and G 1 , G 2 two nonempty, open and bounded subsets of X such that 0 ∈ G 2 and G 2 ¯ ⊂ G 1 . The problem ( ∗ ) T x + C x = 0 is considered, where T : X ⊃ D ( T ) → X (or X ∗ ) is an accretive (or monotone) o