Zobrazeno 1 - 10
of 16
pro vyhledávání: '"Athanasia D. Skentou"'
Autor:
Olga Mavrouli, Athanasia D. Skentou, Josep Maria Carbonell, Markos Z. Tsoukalas, M. Amparo Núñez-Andrés, Panagiotis G. Asteris
Publikováno v:
Geosciences, Vol 13, Iss 6, p 156 (2023)
Although the principal aim of the rockfall management is to prevent rock boulders from reaching the buildings instead of the buildings resisting the boulder impacts, there usually exists a residual risk that has to be assessed, even when structural p
Externí odkaz:
https://doaj.org/article/cd23219183e342ffa78c1eb335b0d921
Autor:
Bo Ke, Manoj Khandelwal, Panagiotis G. Asteris, Athanasia D. Skentou, Anna Mamou, Danial Jahed Armaghani
Publikováno v:
IEEE Access, Vol 9, Pp 91347-91360 (2021)
Rock-burst is a common failure in hard rock related projects in civil and mining construction and therefore, proper classification and prediction of this phenomenon is of interest. This research presents the development of optimized naïve Bayes mode
Externí odkaz:
https://doaj.org/article/50ad93bff7654156a393a084a1a9db4e
Autor:
Jinsong Liao, Panagiotis G. Asteris, Liborio Cavaleri, Ahmed Salih Mohammed, Minas E. Lemonis, Markos Z. Tsoukalas, Athanasia D. Skentou, Chrysanthos Maraveas, Mohammadreza Koopialipoor, Danial Jahed Armaghani
Publikováno v:
Buildings, Vol 11, Iss 12, p 629 (2021)
An accurate estimation of the axial compression capacity of the concrete-filled steel tubular (CFST) column is crucial for ensuring the safety of structures containing them and preventing related failures. In this article, two novel hybrid fuzzy syst
Externí odkaz:
https://doaj.org/article/920753b068e64f93b52f888ef3aff82d
Autor:
Liborio Cavaleri, Panagiotis G. Asteris, Pandora P. Psyllaki, Maria G. Douvika, Athanasia D. Skentou, Nikolaos M. Vaxevanidis
Publikováno v:
Applied Sciences, Vol 9, Iss 14, p 2788 (2019)
The present paper discussed the development of a reliable and robust artificial neural network (ANN) capable of predicting the tribological performance of three highly alloyed tool steel grades. Experimental results were obtained by performing plane-
Externí odkaz:
https://doaj.org/article/fc50661ba272444cb12846cb3e852e49
Autor:
Panagiotis G. Asteris, Antonia Moropoulou, Athanasia D. Skentou, Maria Apostolopoulou, Amin Mohebkhah, Liborio Cavaleri, Hugo Rodrigues, Humberto Varum
Publikováno v:
Applied Sciences, Vol 9, Iss 2, p 243 (2019)
A methodology aiming to predict the vulnerability of masonry structures under seismic action is presented herein. Masonry structures, among which many are cultural heritage assets, present high vulnerability under earthquake. Reliable simulations of
Externí odkaz:
https://doaj.org/article/1d04f4a120644530ba819030f3601a4b
Autor:
Athanasia D. Skentou, Abidhan Bardhan, Anna Mamou, Minas E. Lemonis, Gaurav Kumar, Pijush Samui, Danial J. Armaghani, Panagiotis G. Asteris
Publikováno v:
Rock Mechanics and Rock Engineering. 56:487-514
The use of three artificial neural network (ANN)-based models for the prediction of unconfined compressive strength (UCS) of granite using three non-destructive test indicators, namely pulse velocity, Schmidt hammer rebound number, and effective poro
Publikováno v:
Rock Mechanics and Rock Engineering. 55:6805-6840
Autor:
Panagiotis G. Asteris, Manoj Khandelwal, Bo Ke, Danial Jahed Armaghani, Anna Mamou, Athanasia D. Skentou
Publikováno v:
IEEE Access. 9:91347-91360
Rock-burst is a common failure in hard rock related projects in civil and mining construction and therefore, proper classification and prediction of this phenomenon is of interest. This research presents the development of optimized naive Bayes model
Autor:
Athanasia D. Skentou, Chrissy-Elpida N. Adami, Rui Pedro Marques, Minas E. Lemonis, Hoang Nguyen, Mohsen Hajihassani, Paulo B. Lourenço, Panagiotis G. Asteris, Hugo Rodrigues, Humberto Varum
Publikováno v:
Repositório Científico de Acesso Aberto de Portugal
Repositório Científico de Acesso Aberto de Portugal (RCAAP)
instacron:RCAAP
Repositório Científico de Acesso Aberto de Portugal (RCAAP)
instacron:RCAAP
Masonry is a building material that has been used in the last 10.000 years and remains competitive today for the building industry. The compressive strength of masonry is used in modern design not only for gravitational and lateral loading, but also
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::90d9b28b016afb8948d5c393e89d7cb0
https://hdl.handle.net/1822/77245
https://hdl.handle.net/1822/77245
Autor:
Liborio Cavaleri, Humberto Varum, Hugo Rodrigues, Panagiotis G. Asteris, Antonia Moropoulou, Maria Apostolopoulou, Amin Mohebkhah, Athanasia D. Skentou
Publikováno v:
Applied Sciences
Volume 9
Issue 2
Repositório Científico de Acesso Aberto de Portugal
Repositório Científico de Acesso Aberto de Portugal (RCAAP)
instacron:RCAAP
Applied Sciences, Vol 9, Iss 2, p 243 (2019)
Volume 9
Issue 2
Repositório Científico de Acesso Aberto de Portugal
Repositório Científico de Acesso Aberto de Portugal (RCAAP)
instacron:RCAAP
Applied Sciences, Vol 9, Iss 2, p 243 (2019)
A methodology aiming to predict the vulnerability of masonry structures under seismic action is presented herein. Masonry structures, among which many are cultural heritage assets, present high vulnerability under earthquake. Reliable simulations of