Zobrazeno 1 - 10
of 19
pro vyhledávání: '"Athanase Cotsiolis"'
Autor:
Nikos Labropoulos, Athanase Cotsiolis
Publikováno v:
Electronic Journal of Differential Equations, Vol 2007, Iss 164, Pp 1-18 (2007)
Following the work of Ding [21] we study the existence of a nontrivial positive solution to the nonlinear Neumann problem $$displaylines{ Delta_qu+a(x)u^{q-1}=lambda f(x)u^{p-1}, quad u>0quad hbox{on } T,cr abla u|^{q-2}frac{partial u}{partial u}+b(x
Externí odkaz:
https://doaj.org/article/6625859d6eec43a2ae3c22530e7da025
Analytical approach of the symmetry: Sharp supercritical Hardy–Sobolev inequalities and applications
Autor:
Athanase Cotsiolis, Nikos Labropoulos
Publikováno v:
Nonlinear Analysis. 171:134-155
We consider the optimal Hardy–Sobolevinequality on smooth bounded symmetric domains of the Euclidean space without any assumption concerning the “shape” of the boundary (i.e. some convexity) confirming that the symmetry of a domain is an intrin
Autor:
Athanase Cotsiolis, Nikos Labropoulos
Publikováno v:
Journal of Mathematical Analysis and Applications. 448:841-863
In this paper, we establish the classical Hardy inequality in the solid torus and some variants of it. The general idea is to use the fact that Sobolev embeddings can be improved in the presence of symmetries. In all cases, using techniques that expl
Autor:
Athanase Cotsiolis, Nikos Labropoulos
Publikováno v:
Nonlinear Analysis. 198:111887
We consider a 3 -dimensional complete Riemannian manifold ( M , g ) with boundary and assuming that an optimal Sobolev or Hardy–Sobolev inequality holds with the same best constant as in the case of the solid torus T we investigate the relationship
Autor:
Nikos Labropoulos, Athanase Cotsiolis
Publikováno v:
Differential and Integral Inequalities ISBN: 9783030274061
In this paper, we present a short survey on the Hardy–Sobolev inequalities, considering the classical case and the fractional as well, by collecting some important known results in the area and some new results where the concept of symmetry plays a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::e46985207579717996730465e10f8b8d
https://doi.org/10.1007/978-3-030-27407-8_6
https://doi.org/10.1007/978-3-030-27407-8_6
Publikováno v:
Journal of Mathematical Analysis and Applications. 373:44-58
We study the weighted Fermat–Torricelli (w.F-T) problem for geodesic triangles on a C 2 complete surface and on an Aleksandrov space of curvature bounded above by a real number K and solve an “inverse” problem on a C 2 complete surface. The sol
Autor:
Nikos Labropoulos, Athanase Cotsiolis
Publikováno v:
Contributions in Mathematics and Engineering ISBN: 9783319313153
In this article, we present some Sobolev-type inequalities on compact Riemannian manifolds with boundary, the data and the functions being invariant under the action of a compact subgroup of the isometry group. We investigate the best constants for t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::f6f129ac5fa7868f23b8a84d6878161c
https://doi.org/10.1007/978-3-319-31317-7_3
https://doi.org/10.1007/978-3-319-31317-7_3
Publikováno v:
Comptes Rendus Mathematique. 340:205-208
On Rn, we prove the existence of sharp logarithmic Sobolev inequalities with higher fractional derivatives. Let s be a positive real number. Any function f ∈ Hs(Rn) satisfies ∫Rn|f(x)|2ln(|f(x)|2‖f‖22)dx+(n+nslnα+lnsΓ(n2)Γ(n2s))‖f‖22
Publikováno v:
Journal of Mathematical Analysis and Applications. 295(1):225-236
We obtain sharp constants for Sobolev inequalities for higher order fractional derivatives. As an application, we give a new proof of a theorem of W. Beckner concerning conformally invariant higher-order differential operators on the sphere.
Publikováno v:
Comptes Rendus Mathematique. 335:801-804
On R n , n⩾1 and n≠2, we prove the existence of a sharp constant for Sobolev inequalities with higher fractional derivatives. Let s be a positive real number. For n>2s and q= 2n n−2s any function f∈ H s ( R n ) satisfies ‖f‖ 2 q ⩽S n,s