Zobrazeno 1 - 10
of 111
pro vyhledávání: '"Astashkin, Sergey V."'
Autor:
Astashkin, Sergey V.
We study subspaces of Orlicz spaces $L_M$ spanned by independent copies $f_k$, $k=1,2,\dots$, of a function $f\in L_M$, $\int_0^1 f(t)\,dt=0$. Any such a subspace $H$ is isomorphic to some Orlicz sequence space $\ell_\psi$. In terms of dilations of t
Externí odkaz:
http://arxiv.org/abs/2407.14870
Autor:
Astashkin, Sergey V.
We prove that every measurable function $f:\,[0,a]\to\mathbb{C}$ such that $|f|=1$ a.e. on $[0,a]$ is an extreme point of the unit ball of the Lorentz space $\Lambda(\varphi)$ on $[0,a]$ whenever $\varphi$ is a not linear, strictly increasing, concav
Externí odkaz:
http://arxiv.org/abs/2407.10178
Autor:
Astashkin, Sergey V., Nilsson, Per G.
We investigate connections between upper/lower estimates for Banach lattices and the notion of relative s-decomposability, which has roots in interpolation theory. To get a characterization of relatively s-decomposable Banach lattices in terms of the
Externí odkaz:
http://arxiv.org/abs/2308.00112
For a separable rearrangement invariant space $X$ on $[0,1]$ of fundamental type we identify the set of all $p\in [1,\infty]$ such that $\ell^p$ is finitely represented in $X$ in such a way that the unit basis vectors of $\ell^p$ ($c_0$ if $p=\infty$
Externí odkaz:
http://arxiv.org/abs/2204.13904
Autor:
Astashkin, Sergey V., Nilsson, Per G.
The main aim of this paper is to develop a general approach, which allows to extend the basics of Brudnyi-Kruglyak interpolation theory to the realm of quasi-Banach lattices. We prove that all $K$-monotone quasi-Banach lattices with respect to a $L$-
Externí odkaz:
http://arxiv.org/abs/2112.13248
Autor:
Astashkin, Sergey V., Nilsson, Per G.
The main result of this paper establishes that the known Arazy-Cwikel property holds for classes of uniformly K-monotone spaces in the quasi-Banach setting provided that the initial couple is mutually closed. As a consequence, we get that the class o
Externí odkaz:
http://arxiv.org/abs/2111.11782
We reformulate, modify and extend a comparison criteria of $L^{p}$ norms obtained by Nazarov-Podkorytov and place it in the general setting of interpolation theory and majorization theory. In particular, we give norm comparison criteria for general s
Externí odkaz:
http://arxiv.org/abs/2107.11854
We establish Arazy-Cwikel type properties for the family of couples $(\ell^{p},\ell^{q})$, $0\le p
Externí odkaz:
http://arxiv.org/abs/2106.03083
Let $E$ be a rearrangement invariant (r.i.) function space on $[0,1]$, and let $Z_E$ consist of all measurable functions $f$ on $(0,\infty)$ such that $f^*\chi_{[0,1]}\in E$ and $f^*\chi_{[1,\infty)}\in L^2$. We reveal close connections between prope
Externí odkaz:
http://arxiv.org/abs/2006.00936