Zobrazeno 1 - 10
of 16
pro vyhledávání: '"Asma Trabelsi"'
Publikováno v:
Information Sciences. 635:414-429
Publikováno v:
Procedia Computer Science. 207:2242-2252
Publikováno v:
Proceedings of the 15th International Conference on Agents and Artificial Intelligence.
Publikováno v:
KES
Open-Domain Question Answering (ODQA) is a technique for finding an answer to a given query from a large set of documents. In this paper, we present an experimentation study to compare ODQA candidate solutions in the context of troubleshooting docume
Autor:
Asma Trabelsi, Dimitri Bettebghor, Mallek Mziou Sallami, Mohamed Ibn Khedher, Samy Kerboua-Benlarbi
Publikováno v:
26th International Conference on Neural Information Processing of the Asia-Pacific Neural Network Society
26th International Conference on Neural Information Processing of the Asia-Pacific Neural Network Society, Dec 2019, Sydney, Australia. pp.274-286, ⟨10.1007/978-3-030-36808-1_30⟩
Communications in Computer and Information Science ISBN: 9783030368074
ICONIP (4)
26th International Conference on Neural Information Processing of the Asia-Pacific Neural Network Society, Dec 2019, Sydney, Australia. pp.274-286, ⟨10.1007/978-3-030-36808-1_30⟩
Communications in Computer and Information Science ISBN: 9783030368074
ICONIP (4)
Embedding machine or deep learning software into safety-critical systems such as autonomous vehicles requires software verification and validation. Such software adds non traceable hazards to traditional hardware and sensors failures, not to mention
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5b8b91c830f4c3eb95b00dada49fe0db
https://hal.archives-ouvertes.fr/hal-02473613
https://hal.archives-ouvertes.fr/hal-02473613
Publikováno v:
Fuzzy Sets and Systems
Fuzzy Sets and Systems, Elsevier, 2019, 366, pp.46-62. ⟨10.1016/j.fss.2018.11.006⟩
Fuzzy Sets and Systems, Elsevier, 2019, 366, pp.46-62. ⟨10.1016/j.fss.2018.11.006⟩
International audience; Decision trees are well-known machine learning techniques for solving complex classification problems. Despite their great success, the standard decision tree algorithms do not have the ability to process imperfect knowledge,
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7364e7a17237da743651b9794dfb6006
https://hal.archives-ouvertes.fr/hal-03354080/file/FSS'2018.pdf
https://hal.archives-ouvertes.fr/hal-03354080/file/FSS'2018.pdf
Publikováno v:
Data Science and Knowledge Engineering for Sensing Decision Support.
Publikováno v:
Communications in Computer and Information Science ISBN: 9783319914725
IPMU (1)
IPMU (1)
Data uncertainty is seen as one of the main issues of several real world applications that can affect the decision of experts. Several studies have been carried out, within the data mining and the pattern recognition fields, for processing the uncert
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::f8b524c36457c776a68403604a6d8e45
https://doi.org/10.1007/978-3-319-91473-2_33
https://doi.org/10.1007/978-3-319-91473-2_33
Publikováno v:
Advances in Artificial Intelligence: From Theory to Practice ISBN: 9783319600413
IEA/AIE (1)
IEA/AIE (1)
Data uncertainty arises in several real world domains, including machine learning and pattern recognition applications. In classification problems, we could very well wind up with uncertain attribute values that are caused by sensor failures, measure
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::91f88e247c39ea6ddc0b8b282290e46b
https://doi.org/10.1007/978-3-319-60042-0_19
https://doi.org/10.1007/978-3-319-60042-0_19
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783319615806
ECSQARU
ECSQARU
The process of combining an ensemble of classifiers has been deemed to be an efficient way for improving the performance of several classification problems. The Random Subspace Method, that consists of training a set of classifiers on different subse
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::97455462cce90d4e95a63093b421f200
https://doi.org/10.1007/978-3-319-61581-3_20
https://doi.org/10.1007/978-3-319-61581-3_20