Zobrazeno 1 - 10
of 39
pro vyhledávání: '"Asja Fischer"'
Publikováno v:
Machine Learning.
Despite of its importance for safe machine learning, uncertainty quantification for neural networks is far from being solved. State-of-the-art approaches to estimate neural uncertainties are often hybrid, combining parametric models with explicit or
Publikováno v:
2021 ISCA Symposium on Security and Privacy in Speech Communication.
In the past few years, it has been shown that deep learning systems are highly vulnerable under attacks with adversarial examples. Neural-network-based automatic speech recognition (ASR) systems are no exception. Targeted and untargeted attacks can m
Autor:
Asja Fischer, Charles Tapley Hoyt, Jens Lehmann, Volker Tresp, Mikhail Galkin, Max Berrendorf, Laurent Vermue, Mehdi Ali, Sahand Sharifzadeh
Publikováno v:
Ali, M, Berrendorf, M, Hoyt, C T, Vermue, L, Galkin, M, Sharifzadeh, S, Fischer, A, Tresp, V & Lehmann, J 2022, ' Bringing Light Into the Dark: A Large-scale Evaluation of Knowledge Graph Embedding Models under a Unified Framework ', Ieee Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 12, pp. 8825-8845 . https://doi.org/10.1109/TPAMI.2021.3124805
The heterogeneity in recently published knowledge graph embedding models' implementations, training, and evaluation has made fair and thorough comparisons difficult. In order to assess the reproducibility of previously published results, we re-implem
Autor:
Jens Lehmann, Denis Lukovnikov, Asja Fischer, Gaurav Maheshwari, Nilesh Chakraborty, Priyansh Trivedi
Publikováno v:
WIREs Data Mining and Knowledge Discovery. 11
Publikováno v:
ESANN 2021 proceedings.
Autor:
Asja Fischer, Denis Lukovnikov
Publikováno v:
ACL/IJCNLP (Findings)
Publikováno v:
Advances in Intelligent Data Analysis XIX ISBN: 9783030742508
IDA
IDA
Recent work based on Deep Learning presents state-of-the-art (SOTA) performance in the named entity recognition (NER) task. However, such models still have the performance drastically reduced in noisy data (e.g., social media, search engines), when c
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::e423091ee259b40a104684c237e98cc1
https://doi.org/10.1007/978-3-030-74251-5_8
https://doi.org/10.1007/978-3-030-74251-5_8
Publikováno v:
Findings of the Association for Computational Linguistics: EMNLP 2021.
Publikováno v:
Communications in Computer and Information Science ISBN: 9783030937355
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::30c7f4cdfb1e5147e747cd798f18c433
https://doi.org/10.1007/978-3-030-93736-2_12
https://doi.org/10.1007/978-3-030-93736-2_12
Autor:
Massih-Reza Amini, Stéphane Canu, Asja Fischer, Tias Guns, Petra Kralj Novak, Grigorios Tsoumakas
The multi-volume set LNAI 13713 until 13718 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2022, which took place in Grenoble, France, in September 2022.The 236 full