Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Asieh Khosravanian"'
Autor:
Asieh Khosravanian, Sayed Saeed Ayat
Publikováno v:
مدیریت اطلاعات سلامت, Vol 12, Iss 1, Pp 3-13 (2015)
مقدمه: انتخاب روش مناسب برای مدلسازی و تحلیل دادههای سلامت و بهداشت، مبتنی بر نوع دادههای موجود، بسیار مهم و در مواردی بسیار حساس است. تحق
Externí odkaz:
https://doaj.org/article/7a49b29ee5944d119667841c350375a0
Autor:
Asieh Khosravanian, Kamran Kazemi
Publikováno v:
مجله علوم پزشکی صدرا, Vol 10, Iss 4, Pp 343-358 (2000)
Introduction: The abnormal growth of the brain cells leads to a brain tumor, which has the highest mortality rate. Brain tumor segmentation from magnetic resonance images (MRI) separate the abnormal mass of tissue from normal brain tissues. However,
Externí odkaz:
https://doaj.org/article/729e9d9858fe4a3bbf7ab19bcb1dfd83
Publikováno v:
International Journal of Imaging Systems and Technology. 33:323-339
Autor:
Asieh Khosravanian, Mohammad Rahmanimanesh, Parviz Keshavarzi, Saeed Mozaffari, Kamran Kazemi
Publikováno v:
Multimedia Tools and Applications. 81:21719-21740
Publikováno v:
The Visual Computer. 37:1185-1206
Intensity inhomogeneity is one of the main challenges in automatic medical image segmentation. In this paper, fuzzy local intensity clustering (FLIC), which is based on the combination of level set algorithm and fuzzy clustering, is proposed to mitig
Publikováno v:
International Journal of Computational Intelligence and Applications. 20
The Social Spider Algorithm (SSA) was introduced based on the information-sharing foraging strategy of spiders to solve the continuous optimization problems. SSA was shown to have better performance than the other state-of-the-art meta-heuristic algo
Publikováno v:
Journal of neuroscience methods. 352
Background Intensity inhomogeneity is one of the common artifacts in image processing. This artifact makes image segmentation more challenging and adversely affects the performance of intensity-based image processing algorithms. New method In this pa
Publikováno v:
Computer methods and programs in biomedicine. 198
Background and Objective Brain tumor segmentation is a challenging issue due to noise, artifact, and intensity non-uniformity in magnetic resonance images (MRI). Manual MRI segmentation is a very tedious, time-consuming, and user-dependent task. This
Autor:
Saeed Ayat, Asieh Khosravanian
Publikováno v:
Journal of Mathematics and Computer Science. 13:136-141
In this research patients with coronary artery disease were identified and classified through the neurofuzzy network with the capacity of automatically extracting fuzzy rules. Fuzzy expert system was implemented using facilities and functions of MATL