Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Ash, Drew D."'
Autor:
Ash, Drew D., Ormes, Nicholas
In this paper we study speedups of dynamical systems in the topological category. Specifically, we characterize when one minimal homeomorphism on a Cantor space is the speedup of another. We go on to provide a characterization for strong speedups, i.
Externí odkaz:
http://arxiv.org/abs/2208.07854
This paper explores the range of bounded speedups in the topological category. Bounded speedups represent both a strengthening of topological speedups as defined in [A 16] and a generalization of powers of a transformation. Here we show that bounded
Externí odkaz:
http://arxiv.org/abs/1610.03537
Autor:
Ash, Drew D.
Given a dynamical system $(X,T)$ one can define a speedup of $(X,T)$ as another dynamical system conjugate to $S:X\rightarrow X$ where $S(x)=T^{p(x)}(x)$ for some function $p:X\rightarrow\mathbb{Z}^{+}$. In $1985$ Arnoux, Ornstein, and Weiss showed t
Externí odkaz:
http://arxiv.org/abs/1605.08446
Autor:
Ash, Drew D.1 (AUTHOR) dash@albion.edu, Dykstra, Andrew2 (AUTHOR), LeMasurier, Michelle2 (AUTHOR)
Publikováno v:
Dynamical Systems: An International Journal. Jun2023, Vol. 38 Issue 2, p249-267. 19p.
Autor:
Ash, Drew D., Ormes, Nicholas S.
Publikováno v:
Israel Journal of Mathematics; May2024, Vol. 261 Issue 1, p91-126, 36p
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Dynamical Systems: An International Journal. Jun2018, Vol. 33 Issue 2, p303-331. 29p.