Zobrazeno 1 - 10
of 29
pro vyhledávání: '"Asger Törnquist"'
Publikováno v:
Journal of Logic and Analysis, Vol 4, Iss 0 (2012)
Externí odkaz:
https://doaj.org/article/4257e963df3546569ae91ed151b4d7d7
Autor:
Asger Törnquist, Jens Mammen
Publikováno v:
Törnquist, A D & Mammen, J 2022, ' Set Theory and a Model of the Mind in Psychology ', Review of Symbolic Logic . https://doi.org/10.1017/S1755020322000107
Törnquist, A & Mammen, J 2022, ' Set Theory and a Model of the Mind in Psychology ', Review of Symbolic Logic . https://doi.org/10.1017/S1755020322000107
Törnquist, A & Mammen, J 2022, ' Set Theory and a Model of the Mind in Psychology ', Review of Symbolic Logic . https://doi.org/10.1017/S1755020322000107
We investigate the mathematics of a model of the human mind which has been proposed by the psychologist Jens Mammen. Mathematical realizations of this model consist of so-called \emph{Mammen spaces}, where a Mammen space is a triple $(U,\mathcal S,\m
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::71ddd9aa6459748418927087e5760289
https://vbn.aau.dk/da/publications/d2143704-cd2e-4519-872d-fa7f3a6cdcb2
https://vbn.aau.dk/da/publications/d2143704-cd2e-4519-872d-fa7f3a6cdcb2
Publikováno v:
Bakke Haga, K, Schrittesser, D & Törnquist, A 2022, ' Maximal almost disjoint families, determinacy, and forcing ', Journal of Mathematical Logic, vol. 22, no. 1, 2150026, pp. 1-42 . https://doi.org/10.1142/S0219061321500264
We study the notion of $\mathcal J$-MAD families where $\mathcal J$ is a Borel ideal on $\omega$. We show that if $\mathcal J$ is an arbitrary $F_\sigma$ ideal, or is any finite or countably iterated Fubini product of $F_\sigma$ ideals, then there ar
Autor:
Inessa Moroz, Asger Törnquist
Publikováno v:
Moroz, I & Törnquist, A 2021, ' The Borel complexity of von Neumann equivalence ', Annals of Pure and Applied Logic, vol. 172, no. 5, 102913 . https://doi.org/10.1016/j.apal.2020.102913
We prove that for a countable discrete group Γ containing a copy of the free group F n , for some 2 ≤ n ≤ ∞ , as a normal subgroup, the equivalence relations of conjugacy, orbit equivalence and von Neumann equivalence of the ergodic a.e. free
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6ee9ee03fdd2d81820e0d886ca0e58f7
https://curis.ku.dk/portal/da/publications/the-borel-complexity-of-von-neumann-equivalence(4a422a57-e7cf-4580-97d0-9434620c9148).html
https://curis.ku.dk/portal/da/publications/the-borel-complexity-of-von-neumann-equivalence(4a422a57-e7cf-4580-97d0-9434620c9148).html
Publikováno v:
Journal für die reine und angewandte Mathematik (Crelles Journal)
Ando, H, Matsuzawa, Y, Thom, A & Törnquist, A D 2020, ' Unitarizability, Maurey-Nikishin factorization, and Polish groups of finite type ', Journal fuer die Reine und Angewandte Mathematik, vol. 758, pp. 223-251 . https://doi.org/10.1515/crelle-2017-0047
Ando, H, Matsuzawa, Y, Thom, A & Törnquist, A D 2020, ' Unitarizability, Maurey-Nikishin factorization, and Polish groups of finite type ', Journal fuer die Reine und Angewandte Mathematik, vol. 758, pp. 223-251 . https://doi.org/10.1515/crelle-2017-0047
Let $\Gamma$ be a countable discrete group, and let $\pi\colon \Gamma\to {\rm{GL}}(H)$ be a representation of $\Gamma$ by invertible operators on a separable Hilbert space $H$. We show that the semidirect product group $G=H\rtimes_{\pi}\Gamma$ is SIN
Autor:
Asger Törnquist, David Schrittesser
Publikováno v:
Schrittesser, D & Törnquist, A 2019, ' The Ramsey property implies no mad families ', Proceedings of the National Academy of Sciences of the United States of America, vol. 116, no. 38, pp. 18883-18887 . https://doi.org/10.1073/pnas.1906183116
We show that if all collections of infinite subsets of $\N$ have the Ramsey property, then there are no infinite maximal almost disjoint (mad) families. This solves a long-standing problem going back to Mathias \cite{mathias}. The proof exploits an i
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::51574e16cb7e76bc2c0b4e424c69d9f0
https://curis.ku.dk/ws/files/229102859/OA_The_Ramsey_property_implies_no_mad_families.pdf
https://curis.ku.dk/ws/files/229102859/OA_The_Ramsey_property_implies_no_mad_families.pdf
Autor:
Asger Törnquist
We show that there are no infinite maximal almost disjoint ("mad") families in Solovay's model, thus solving a long-standing problem posed by A.D.R. Mathias in 1967. We also give a new proof of Mathias' theorem that no analytic infinite almost disjoi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::20ea69ae66346a292141adf673c47629
https://resolver.caltech.edu/CaltechAUTHORS:20180327-083321909
https://resolver.caltech.edu/CaltechAUTHORS:20180327-083321909
Autor:
Asger Törnquist, William Weiss
Publikováno v:
The Journal of Symbolic Logic. 80:1075-1090
We consider natural ${\rm{\Sigma }}_2^1$ definable analogues of many of the classical statements that have been shown to be equivalent to CH. It is shown that these ${\rm{\Sigma }}_2^1$ analogues are equivalent to that all reals are constructible. We
Autor:
Vera Fischer, Asger Törnquist
Publikováno v:
Fundamenta Mathematicae. 230:205-236
The main result of the present paper is that $\mathfrak a_g$, the minimal size of maximal cofinitary group, can be of countable cofinality. To prove this we define a natural poset for adding a maximal cofinitary group of a given cardinality, which en
Publikováno v:
Sasyk, R, Törnquist, A & Vaes, S 2019, ' Non-classification of free Araki-Woods factors and τ-invariants ', Groups, Geometry, and Dynamics, vol. 13, no. 4, pp. 1219-1234 . https://doi.org/10.4171/GGD/520
CONICET Digital (CONICET)
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
CONICET Digital (CONICET)
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
We define the standard Borel space of free Araki-Woods factors and prove that their isomorphism relation is not classifiable by countable structures. We also prove that equality of $\tau$-topologies, arising as invariants of type III factors, as well
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2ec9cc611d318bbd1f248c763be8c538
http://arxiv.org/abs/1708.07496
http://arxiv.org/abs/1708.07496