Zobrazeno 1 - 10
of 80
pro vyhledávání: '"Asashiba, Hideto"'
Autor:
Asashiba, Hideto, Pan, Shengyong
Let $G$ be a group and $\Bbbk$ a commutative ring. All categories and functors are assumed to be $\Bbbk$-linear. We define a $G$-invariant bimodule ${}_SM_R$ over $G$-categories $R, S$ and a $G$-graded bimodule ${}_BN_A$ over $G$-graded categories $A
Externí odkaz:
http://arxiv.org/abs/2408.03280
We define two notions. The first one is a $compression\ system$ $\xi$ for a finite poset $\mathbf{P}$, which assigns each interval subposet $I$ to a poset morphism $\xi_I \colon Q_I \to \mathbf{P}$ satisfying some conditions, where $Q_I$ is a connect
Externí odkaz:
http://arxiv.org/abs/2403.08308
Throughout this paper $G$ is a fixed group, and $k$ is a fixed field. All categories are assumed to be $k$-linear. First we give a systematic way to induce $G$-precoverings by adjoint functors using a 2-categorical machinery, which unifies many simil
Externí odkaz:
http://arxiv.org/abs/2402.04680
Autor:
Asashiba, Hideto
Let $G$ be a finitely generated right $A$-module for a finite-dimensional algebra $A$ over a filed $\Bbbk$, and $\mathcal{I}$ the additive closure of $G$. We will define a $\mathcal{I}$-relative Koszul coresolution $\mathcal{K}^{\bullet}(V)$ of an in
Externí odkaz:
http://arxiv.org/abs/2307.06559
Publikováno v:
Journal of Pure and Applied Algebra, Vol 227, no.10 (2023): 107397
In topological data analysis, two-parameter persistence can be studied using the representation theory of the 2d commutative grid, the tensor product of two Dynkin quivers of type A. In a previous work, we defined interval approximations using restri
Externí odkaz:
http://arxiv.org/abs/2207.03663
Autor:
Asashiba, Hideto, Pan, Shengyong
A diagram consisting of differential graded (dg for short) categories and dg functors is formulated in this paper as a colax functor $X$ from a small category $I$ to the 2-category k-dgCat of small dg categories, dg functors and dg natural transforma
Externí odkaz:
http://arxiv.org/abs/2201.10760
Publikováno v:
In Journal of Pure and Applied Algebra October 2023 227(10)
Publikováno v:
In Journal of Computational Algebra September 2023 6-7
In this work, we propose a new invariant for $2$D persistence modules called the compressed multiplicity and show that it generalizes the notions of the dimension vector and the rank invariant. In addition, for a $2$D persistence module $M$, we propo
Externí odkaz:
http://arxiv.org/abs/1911.01637