Zobrazeno 1 - 10
of 19 654
pro vyhledávání: '"Arya P P"'
B-cos Networks have been shown to be effective for obtaining highly human interpretable explanations of model decisions by architecturally enforcing stronger alignment between inputs and weight. B-cos variants of convolutional networks (CNNs) and vis
Externí odkaz:
http://arxiv.org/abs/2411.00715
Autor:
Lau, Erwin T., Nagai, Daisuke, Farahi, Arya, Ishiyama, Tomoaki, Miyatake, Hironao, Osato, Ken, Shirasaki, Masato
We present the Baryon Pasted (BP) X-ray and thermal Sunyaev-Zel'dovich (tSZ) maps derived from the half-sky Uchuu Lightcone simulation. These BP-Uchuu maps are constructed using more than $75$ million dark matter halos with masses $M_{500c} \geq 10^{
Externí odkaz:
http://arxiv.org/abs/2411.00108
Autor:
Xie, Yiqing, Zhou, Wenxuan, Prakash, Pradyot, Jin, Di, Mao, Yuning, Fettes, Quintin, Talebzadeh, Arya, Wang, Sinong, Fang, Han, Rose, Carolyn, Fried, Daniel, Zhang, Hejia
Factuality evaluation aims to detect factual errors produced by language models (LMs) and hence guide the development of more factual models. Towards this goal, we train a factuality evaluator, FenCE, that provides LM generators with claim-level fact
Externí odkaz:
http://arxiv.org/abs/2410.18359
Open clusters (OCs) in the Galaxy are excellent probes for tracing the structure and evolution of the Galactic disk. We present an updated catalog of parameters for 1,145 OCs, estimated using the Gaia DR3 data earlier listed in Cantat-Gaudin et al. (
Externí odkaz:
http://arxiv.org/abs/2410.15305
Autor:
Li, Xiaxin, Mazumdar, Arya
In Group Testing, the objective is to identify K defective items out of N, K<
Externí odkaz:
http://arxiv.org/abs/2410.14566
Autor:
Tschand, Arya, Rajan, Arun Tejusve Raghunath, Idgunji, Sachin, Ghosh, Anirban, Holleman, Jeremy, Kiraly, Csaba, Ambalkar, Pawan, Borkar, Ritika, Chukka, Ramesh, Cockrell, Trevor, Curtis, Oliver, Fursin, Grigori, Hodak, Miro, Kassa, Hiwot, Lokhmotov, Anton, Miskovic, Dejan, Pan, Yuechao, Manmathan, Manu Prasad, Raymond, Liz, John, Tom St., Suresh, Arjun, Taubitz, Rowan, Zhan, Sean, Wasson, Scott, Kanter, David, Reddi, Vijay Janapa
Rapid adoption of machine learning (ML) technologies has led to a surge in power consumption across diverse systems, from tiny IoT devices to massive datacenter clusters. Benchmarking the energy efficiency of these systems is crucial for optimization
Externí odkaz:
http://arxiv.org/abs/2410.12032
In this paper, we study the data-dependent convergence and generalization behavior of gradient methods for neural networks with smooth activation. Our first result is a novel bound on the excess risk of deep networks trained by the logistic loss, via
Externí odkaz:
http://arxiv.org/abs/2410.10024
Autor:
Denton, Will, Bryant, Michael, Chiavetta, Lilly, Shah, Vedarsh, Zhu, Rico, Xue, Philip, Chen, Vincent, Lin, Maxwell, Le, Hung, Camacho, Austin, Galvez, Raul, Yang, Nathan, Ren, Nathanael, Rose, Tyler, Chu, Mathew, Ergashev, Amir, Arya, Saagar, Pieter, Kaelyn, Horowitz, Ethan, Allampallam, Maanav, Zheng, Patrick, Kaarls, Mia, Wood, June
The Duke Robotics Club is proud to present our robot for the 2024 RoboSub Competition: Oogway. Now in its second year, Oogway has been dramatically upgraded in both its capabilities and reliability. Oogway was built on the principle of independent, w
Externí odkaz:
http://arxiv.org/abs/2410.09684
Autor:
Gyawali, Gaurav, Cochran, Tyler, Lensky, Yuri, Rosenberg, Eliott, Karamlou, Amir H., Kechedzhi, Kostyantyn, Berndtsson, Julia, Westerhout, Tom, Asfaw, Abraham, Abanin, Dmitry, Acharya, Rajeev, Beni, Laleh Aghababaie, Andersen, Trond I., Ansmann, Markus, Arute, Frank, Arya, Kunal, Astrakhantsev, Nikita, Atalaya, Juan, Babbush, Ryan, Ballard, Brian, Bardin, Joseph C., Bengtsson, Andreas, Bilmes, Alexander, Bortoli, Gina, Bourassa, Alexandre, Bovaird, Jenna, Brill, Leon, Broughton, Michael, Browne, David A., Buchea, Brett, Buckley, Bob B., Buell, David A., Burger, Tim, Burkett, Brian, Bushnell, Nicholas, Cabrera, Anthony, Campero, Juan, Chang, Hung-Shen, Chen, Zijun, Chiaro, Ben, Claes, Jahan, Cleland, Agnetta Y., Cogan, Josh, Collins, Roberto, Conner, Paul, Courtney, William, Crook, Alexander L., Das, Sayan, Debroy, Dripto M., De Lorenzo, Laura, Barba, Alexander Del Toro, Demura, Sean, Di Paolo, Agustin, Donohoe, Paul, Drozdov, Ilya, Dunsworth, Andrew, Earle, Clint, Eickbusch, Alec, Elbag, Aviv Moshe, Elzouka, Mahmoud, Erickson, Catherine, Faoro, Lara, Fatemi, Reza, Ferreira, Vinicius S., Burgos, Leslie Flores, Forati, Ebrahim, Fowler, Austin G., Foxen, Brooks, Ganjam, Suhas, Gasca, Robert, Giang, William, Gidney, Craig, Gilboa, Dar, Gosula, Raja, Dau, Alejandro Grajales, Graumann, Dietrich, Greene, Alex, Gross, Jonathan A., Habegger, Steve, Hamilton, Michael C., Hansen, Monica, Harrigan, Matthew P., Harrington, Sean D., Heslin, Stephen, Heu, Paula, Hill, Gordon, Hilton, Jeremy, Hoffmann, Markus R., Huang, Hsin-Yuan, Huff, Ashley, Huggins, William J., Ioffe, Lev B., Isakov, Sergei V., Jeffrey, Evan, Jiang, Zhang, Jones, Cody, Jordan, Stephen, Joshi, Chaitali, Juhas, Pavol, Kafri, Dvir, Kang, Hui, Khaire, Trupti, Khattar, Tanuj, Khezri, Mostafa, Kieferová, Mária, Kim, Seon, Klimov, Paul V., Klots, Andrey R., Kobrin, Bryce, Korotkov, Alexander N., Kostritsa, Fedor, Kreikebaum, John Mark, Kurilovich, Vladislav D., Landhuis, David, Lange-Dei, Tiano, Langley, Brandon W., Laptev, Pavel, Lau, Kim-Ming, Guevel, Loïck Le, Ledford, Justin, Lee, Joonho, Lee, Kenny, Lester, Brian J., Li, Wing Yan, Lill, Alexander T., Liu, Wayne, Livingston, William P., Locharla, Aditya, Lundahl, Daniel, Lunt, Aaron, Madhuk, Sid, Maloney, Ashley, Mandrà, Salvatore, Martin, Leigh S., Martin, Steven, Martin, Orion, Maxfield, Cameron, McClean, Jarrod R., McEwen, Matt, Meeks, Seneca, Megrant, Anthony, Mi, Xiao, Miao, Kevin C., Mieszala, Amanda, Molina, Sebastian, Montazeri, Shirin, Morvan, Alexis, Movassagh, Ramis, Neill, Charles, Nersisyan, Ani, Newman, Michael, Nguyen, Anthony, Nguyen, Murray, Ni, Chia-Hung, Niu, Murphy Yuezhen, Oliver, William D., Ottosson, Kristoffer, Pizzuto, Alex, Potter, Rebecca, Pritchard, Orion, Pryadko, Leonid P., Quintana, Chris, Reagor, Matthew J., Rhodes, David M., Roberts, Gabrielle, Rocque, Charles, Rubin, Nicholas C., Saei, Negar, Sankaragomathi, Kannan, Satzinger, Kevin J., Schurkus, Henry F., Schuster, Christopher, Shearn, Michael J., Shorter, Aaron, Shutty, Noah, Shvarts, Vladimir, Sivak, Volodymyr, Skruzny, Jindra, Small, Spencer, Smith, W. Clarke, Springer, Sofia, Sterling, George, Suchard, Jordan, Szalay, Marco, Szasz, Aaron, Sztein, Alex, Thor, Douglas, Torunbalci, M. Mert, Vaishnav, Abeer, Vdovichev, Sergey, Vidal, Guifré, Heidweiller, Catherine Vollgraff, Waltman, Steven, Wang, Shannon X., White, Theodore, Wong, Kristi, Woo, Bryan W. K., Xing, Cheng, Yao, Z. Jamie, Yeh, Ping, Ying, Bicheng, Yoo, Juhwan, Yosri, Noureldin, Young, Grayson, Zalcman, Adam, Zhang, Yaxing, Zhu, Ningfeng, Zobrist, Nicholas, Boixo, Sergio, Kelly, Julian, Lucero, Erik, Chen, Yu, Smelyanskiy, Vadim, Neven, Hartmut, Kovrizhin, Dmitry, Knolle, Johannes, Halimeh, Jad C., Aleiner, Igor, Moessner, Roderich, Roushan, Pedram
One of the most challenging problems in the computational study of localization in quantum manybody systems is to capture the effects of rare events, which requires sampling over exponentially many disorder realizations. We implement an efficient pro
Externí odkaz:
http://arxiv.org/abs/2410.06557
Autor:
Chakraborty, Arya, Basu, Auhona
The financial domain presents a complex environment for stock market prediction, characterized by volatile patterns and the influence of multifaceted data sources. Traditional models have leveraged either Convolutional Neural Networks (CNN) for spati
Externí odkaz:
http://arxiv.org/abs/2410.12807