Zobrazeno 1 - 10
of 77
pro vyhledávání: '"Arulselvan, Ashwin"'
Publikováno v:
In Computers and Operations Research November 2023 159
Publikováno v:
In Computers and Operations Research July 2021 131
Publikováno v:
In European Journal of Operational Research 16 January 2021 288(2):496-510
Autor:
Arulselvan, Ashwin.
Publikováno v:
RESTRICTED TO UF STUDENTS, STAFF, FACULTY AND ON-CAMPUS USE UNTIL 2010-02-28
Thesis (Ph.D.)--University of Florida, 2009.
Title from title page of source document. Document formatted into pages; contains 179 pages. Includes vita. Includes bibliographical references.
Title from title page of source document. Document formatted into pages; contains 179 pages. Includes vita. Includes bibliographical references.
Externí odkaz:
http://purl.fcla.edu/fcla/etd/UFE0024855
Autor:
Arulselvan, Ashwin.
Thesis (M.S.)--University of Florida, 2006.
Title from title page of source document. Document formatted into pages; contains 40 pages. Includes vita. Includes bibliographical references.
Title from title page of source document. Document formatted into pages; contains 40 pages. Includes vita. Includes bibliographical references.
Externí odkaz:
http://purl.fcla.edu/fcla/etd/UFE0014925
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
We study a natural generalization of the maximum weight many-to-one matching problem. We are given an undirected bipartite graph $G= (A \cup P, E)$ with weights on the edges in $E$, and with lower and upper quotas on the vertices in $P$. We seek a ma
Externí odkaz:
http://arxiv.org/abs/1412.0325
Flows over time are used to model many real-world logistic and routing problems. The networks underlying such problems -- streets, tracks, etc. -- are inherently undirected and directions are only imposed on them to reduce the danger of colliding veh
Externí odkaz:
http://arxiv.org/abs/1409.3081
Publikováno v:
In Computers and Operations Research December 2019 112
Autor:
Arulselvan, Ashwin, Karch, Daniel
Padberg introduced a geometric notion of ranks for (mixed) integer rational polyhedrons and conjectured that the geometric rank of the matching polytope is one. In this work, we prove that this conjecture is true.
Externí odkaz:
http://arxiv.org/abs/1309.1347