Zobrazeno 1 - 5
of 5
pro vyhledávání: '"Artuur M. Leeuwenberg"'
Autor:
Anne A. H. de Hond, Artuur M. Leeuwenberg, Lotty Hooft, Ilse M. J. Kant, Steven W. J. Nijman, Hendrikus J. A. van Os, Jiska J. Aardoom, Thomas P. A. Debray, Ewoud Schuit, Maarten van Smeden, Johannes B. Reitsma, Ewout W. Steyerberg, Niels H. Chavannes, Karel G. M. Moons
Publikováno v:
npj Digital Medicine, Vol 5, Iss 1, Pp 1-13 (2022)
Abstract While the opportunities of ML and AI in healthcare are promising, the growth of complex data-driven prediction models requires careful quality and applicability assessment before they are applied and disseminated in daily practice. This scop
Externí odkaz:
https://doaj.org/article/6d457ef87593436480c56d463e4239db
Autor:
Artuur M. Leeuwenberg, Maarten van Smeden, Johannes A. Langendijk, Arjen van der Schaaf, Murielle E. Mauer, Karel G. M. Moons, Johannes B. Reitsma, Ewoud Schuit
Publikováno v:
Diagnostic and Prognostic Research, Vol 6, Iss 1, Pp 1-13 (2022)
Abstract Background Clinical prediction models are developed widely across medical disciplines. When predictors in such models are highly collinear, unexpected or spurious predictor-outcome associations may occur, thereby potentially reducing face-va
Externí odkaz:
https://doaj.org/article/8373a8545fff42b1babb94e9e3a2b729
Autor:
Feike J. Loots, Marleen Smits, Kevin Jenniskens, Artuur M. Leeuwenberg, Paul H. J. Giesen, Lotte Ramerman, Robert Verheij, Arthur R. H. van Zanten, Roderick P. Venekamp
Publikováno v:
PLoS ONE, Vol 18, Iss 12 (2023)
Externí odkaz:
https://doaj.org/article/31c22fb7b8f24ae49c232f01a5ce7a30
Autor:
Artuur M Leeuwenberg, Ewoud Schuit
Publikováno v:
The Lancet: Digital Health, Vol 2, Iss 10, Pp e496-e497 (2020)
Externí odkaz:
https://doaj.org/article/9d9f91ebe462454eb03169a9efce769f
Autor:
Artuur M. Leeuwenberg, Johannes B. Reitsma, Lisa G.L.J. Van den Bosch, Jeroen Hoogland, Arjen van der Schaaf, Frank J.P. Hoebers, Oda B. Wijers, Johannes A. Langendijk, Karel G.M. Moons, Ewoud Schuit
Publikováno v:
Leeuwenberg, A M, Reitsma, J B, Van den Bosch, L G L J, Hoogland, J, van der Schaaf, A, Hoebers, F J P, Wijers, O B, Langendijk, J A, Moons, K G M & Schuit, E 2023, ' The relation between prediction model performance measures and patient selection outcomes for proton therapy in head and neck cancer ', Radiotherapy and Oncology, vol. 179, 109449 . https://doi.org/10.1016/j.radonc.2022.109449
Radiotherapy and Oncology, 179:109449. Elsevier Ireland Ltd
Radiotherapy and Oncology, 179:109449. ELSEVIER IRELAND LTD
Radiotherapy and Oncology, 179:109449. Elsevier Ireland Ltd
Radiotherapy and Oncology, 179:109449. ELSEVIER IRELAND LTD
BACKGROUND: Normal-tissue complication probability (NTCP) models predict complication risk in patients receiving radiotherapy, considering radiation dose to healthy tissues, and are used to select patients for proton therapy, based on their expected