Zobrazeno 1 - 10
of 67
pro vyhledávání: '"Artur Nicolau"'
Autor:
Adem Limani, Artur Nicolau
Publikováno v:
Indiana University Mathematics Journal. 72:381-407
Autor:
Pavel Mozolyako, Artur Nicolau
Publikováno v:
Potential Analysis. 55:53-74
We study the size of the set of points where the α-divided difference of a function in the Holder class Λα is bounded below by a fixed positive constant. Our results are obtained from their discrete analogues which can be stated in the language of
Autor:
Carlo Bellavita, Artur Nicolau
Three different characterizations of one-component bounded analytic functions are provided. The first one is related to the the inner-outer factorization, the second one is in terms of the size of the reproducing kernels in the corresponding de Brang
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2705cc494ba45c28eb24362db45db52e
Autor:
Juan Jesús Donaire, Artur Nicolau
Let $f$ be a finite Blaschke product with $f(0)=0$, which is not a rotation and let $f^{n}$ be its $n$-th iterate. Given a sequence $\{a_{n}\}$ of complex numbers consider $F= \sum a_n f^{n}$. If $\{a_n\}$ tends to $0$ but $\sum |a_n| = \infty $, we
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2fc532f690a3d60a7816e49070de4392
Publikováno v:
Proceedings of the American Mathematical Society. 146(8):3403-3412
For a bounded simply connected domain $\Omega\subset\mathbb{R}^2$, any point $z\in\Omega$ and any $0
Comment: 12 pages
Comment: 12 pages
Publikováno v:
The Journal of Geometric Analysis. 28:1665-1686
In this paper we analyze the oscillation of functions having derivatives in the Holder or Zygmund class in terms of generalized differences and prove that its growth is governed by a version of the classical Kolmogorov’s Law of the Iterated Logarit
Autor:
Janne Gröhn, Artur Nicolau
Publikováno v:
Journal of Functional Analysis. 272:2463-2486
For 1 / 2 p 1 , a description of inner functions whose derivative is in the Hardy space H p is given in terms of either their mapping properties or the geometric distribution of their zeros.
Autor:
Artur Nicolau, Janne Gröhn
Publikováno v:
Bulletin of the London Mathematical Society. 49:380-390
Autor:
Atte Reijonen, Artur Nicolau
We present a characterization of one-component inner functions in terms of the location of their zeros and their associated singular measure. As consequence we answer several questions posed by J. Cima and R. Mortini. In particular we prove that for
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4ee1ca7e8d9ee01e9995213dc39b7225
Publikováno v:
Journal of Functional Analysis
Journal of Functional Analysis, 2019, 276, pp.2636-2661. ⟨10.1016/j.jfa.2018.08.001⟩
Journal of Functional Analysis, Elsevier, 2019, 276, pp.2636-2661. ⟨10.1016/j.jfa.2018.08.001⟩
Journal of Functional Analysis, 2019, 276, pp.2636-2661. ⟨10.1016/j.jfa.2018.08.001⟩
Journal of Functional Analysis, Elsevier, 2019, 276, pp.2636-2661. ⟨10.1016/j.jfa.2018.08.001⟩
Let $I$ be an inner function in the unit disk $\mathbb D$ and let $\mathcal N$ denote the Nevanlinna class. We prove that under natural assumptions, Bezout equations in the quotient algebra $\mathcal N/I\mathcal N$ can be solved if and only if the ze
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3c9be70d718093b8977924ee7e894a32
https://hal.science/hal-01766910
https://hal.science/hal-01766910