Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Artsrun Sargsyan"'
Autor:
Artsrun Sargsyan
Publikováno v:
Colloquium Mathematicum. 161:111-129
Autor:
M. G. Grigoryan, Artsrun Sargsyan
Publikováno v:
Banach J. Math. Anal. 13, no. 3 (2019), 647-674
We address questions on the existence and structure of universal functions for classes $L^{p}[0,1)^{2}$ , $p\in (0,1)$ , with respect to the double Walsh system. It is shown that there exists a measurable set $E\subset [0,1)^{2}$ with measure arbitra
Autor:
Artsrun Sargsyan, M. G. Grigoryan
Publikováno v:
Positivity. 23:1261-1280
In the paper it is shown that there exists a function $$U\in L^1[0,1)^2$$ , which is universal for all class $$L^{p}[0,1)^2$$ , $$p\in (0,1)$$ , by rectangles and by spheres with respect to the double Walsh system in the sense of signs of Fourier coe
Publikováno v:
Banach J. Math. Anal. 12, no. 1 (2018), 104-125
In this article, we show that there exist a function $g\in L^{1}[0,1]$ and a weight function $0\lt \mu(x)\leq1$ so that $g$ is universal for each class $L^{p}_{\mu}[0,1]$ , $p\geq 1$ , with respect to signs-subseries of its Fourier–Walsh series.
Autor:
Martin Grigoryan, Artsrun Sargsyan
Publikováno v:
Positivity. 21:1457-1482
It is shown that there exist such a function $$g\in L^1[0,1]$$ and a weight function $$0
Autor:
Artsrun Sargsyan, M. G. Grigoryan
Publikováno v:
Математический сборник. 199:3-26
Autor:
Artsrun Sargsyan
Publikováno v:
Armenian Journal of Mathematics, Vol 3, Iss 1 (2010)