Zobrazeno 1 - 10
of 40
pro vyhledávání: '"Arthur L. Besse"'
Autor:
Arthur L. Besse
Einstein's equations stem from General Relativity. In the context of Riemannian manifolds, an independent mathematical theory has developed around them. Recently, it has produced several striking results, which have been of great interest also to phy
Autor:
Arthur L. Besse
Publikováno v:
Duration and Change ISBN: 9783642785047
The sessions “Differentialgeometrie im Grosen”, initiated by Professor Wilhelm Klingenberg and Professor Shiing Shen Chern, have brought to Oberwolfach a very international crowd of geometers for many years. We begin this review by presenting som
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::d9c131328de009808c169819574d65c7
https://doi.org/10.1007/978-3-642-78502-3_22
https://doi.org/10.1007/978-3-642-78502-3_22
Publikováno v:
Review of Scientific Instruments. 38:641-645
Driver temperatures in excess of 25 000°K have been obtained for an arc driven shock tube by utilizing a prestressed ceramic liner. A steel jacket is shrunk onto the 99% alumina liner enabling it to withstand 3.17×108 N/m2 internal pressure. This s
Autor:
Arthur L. Besse, Allen G. Rubin
Publikováno v:
Journal of Spacecraft and Rockets. 23:122-124
Autor:
Joseph G. Kelley, Arthur L. Besse
Publikováno v:
Review of Scientific Instruments. 37:1497-1499
A Twyman‐Green arrangement with a narrow laser beam and twin photomultipliers is used to obtain positive indication of the direction of fringe movement, resolution of 1/12 of a fringe, and good discrimination against shock induced radiation. The in
Autor:
Arthur L. Besse
Publikováno v:
Review of Scientific Instruments. 42:1722-1724
Arc driven shock tubes customarily have small diameter driver sections and their performance is generally limited by the available electrical energy. A theory of shock tube operation based on these considerations is presented and compared to observed
Autor:
Arthur L. Besse
Publikováno v:
Einstein Manifolds ISBN: 9783540741206
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::bd990ad0e1538275471a49847ecf9a76
https://doi.org/10.1007/978-3-540-74311-8_11
https://doi.org/10.1007/978-3-540-74311-8_11
Autor:
Arthur L. Besse
Publikováno v:
Manifolds all of whose Geodesics are Closed ISBN: 9783642618789
We are interested in the study of Riemannian manifolds (M, g) (called Cl-manifolds) whose geodesies are periodic and have the same length l. We define the manifold of geodesies C g M for a Cl-manifold and we relate its tangent spaces to normal Jacobi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::5a6decdd53cb3d84e9d9f19eba699fc1
https://doi.org/10.1007/978-3-642-61876-5_3
https://doi.org/10.1007/978-3-642-61876-5_3
Autor:
Arthur L. Besse
Publikováno v:
Einstein Manifolds ISBN: 9783540741206
Since the main emphasis of the boook is on compact spaces, this chapter on non-compact examples is only meant as a report.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::b9625efcb4494d723ba9ec6ca0f94812
https://doi.org/10.1007/978-3-540-74311-8_16
https://doi.org/10.1007/978-3-540-74311-8_16
Autor:
Arthur L. Besse
Publikováno v:
Einstein Manifolds ISBN: 9783540741206
In this chapter we discuss some generalizations of Einstein metrics, that is, a few classes of Riemannian manifolds characterized by tensorial conditions, which are consequences of the Einstein metric equation. Among such generalizations, we restrict
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::8ae26d411e9499ac744e2c36c5d68627
https://doi.org/10.1007/978-3-540-74311-8_17
https://doi.org/10.1007/978-3-540-74311-8_17