Zobrazeno 1 - 10
of 154
pro vyhledávání: '"Arthur J Krener"'
Autor:
Arthur J. Krener
Publikováno v:
IFAC-PapersOnLine. 53:2165-2170
In this paper we consider discrete time stochastic optimal control problems over infinite and finite time horizons. We show that for a large class of such problems the Taylor polynomials of the solutions to the associated Dynamic Programming Equation
Publikováno v:
2021 IEEE Electric Ship Technologies Symposium (ESTS).
This paper presents a control method to eliminate the common mode voltage created by a three-phase, four-leg voltage source inverter. Wide band gap devices create an opportunity to use pulse density modulation instead of pulse width modulation, with
Autor:
Arthur J Krener
We consider a rod that is heated/cooled and sensed at multiple point locations. To stabilize it to a constant temperature we set up a Linear Quadratic Regulator that we explicitly solve by the method of completing the square to find the optimal linea
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::073e64aa45ef560ccd666ae7893b8915
http://arxiv.org/abs/2104.01706
http://arxiv.org/abs/2104.01706
Autor:
Arthur J. Krener
Publikováno v:
Encyclopedia of Systems and Control ISBN: 9783030441838
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::578440b2b2c39091da11926fdc308e58
https://doi.org/10.1007/978-3-030-44184-5_80
https://doi.org/10.1007/978-3-030-44184-5_80
Autor:
Arthur J. Krener
17 USC 105 interim-entered record; under review. The article of record as published may be found at http://dx.doi.org/10.1016/j.sysconle.2021.104949 We present and solve a Linear Quadratic Regulator (LQR) for the boundary control of the beam equation
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::52d3b68cadec301ac4cd782637d6f9c4
Autor:
Arthur J. Krener
Publikováno v:
CDC
In 1961 E. G. Albrekht presented a method for the optimal stabilization of smooth, nonlinear, finite dimensional, continuous time control systems. This method has been extended to similar systems in discrete time and to some stochastic systems in con
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c99f541b1ed297f80017f972ab5b486e
https://escholarship.org/uc/item/93s7s0x6
https://escholarship.org/uc/item/93s7s0x6
Autor:
Arthur J. Krener
Publikováno v:
Encyclopedia of Systems and Control ISBN: 9781447151029
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::22a1c70c6695c07719215a437699763c
https://doi.org/10.1007/978-1-4471-5102-9_100071-1
https://doi.org/10.1007/978-1-4471-5102-9_100071-1
Autor:
Arthur J. Krener
Publikováno v:
Systems & Control Letters. 160:105118
Autor:
Arthur J. Krener
Publikováno v:
CDC
We consider infinite horizon, stochastic, smooth optimal control problems in continuous time where the coefficients of the white Gaussian noise terms in the dynamics vanish at the origin. We show how the Taylor polynomials of the optimal cost and the