Zobrazeno 1 - 3
of 3
pro vyhledávání: '"Arthur Forey"'
Autor:
Arthur Forey
Publikováno v:
Manuscripta Mathematica, 166 (3)
In this note, we establish a version of the local Cauchy-Crofton formula for definable sets in Henselian discretely valued fields of characteristic zero. It allows to compute the motivic local density of a set from the densities of its projections in
Publikováno v:
Algebra & Number Theory
Algebra & Number Theory, Mathematical Sciences Publishers 2020, ⟨10.2140/ant.2020.14.1423⟩
Algebra & Number Theory, 2020, ⟨10.2140/ant.2020.14.1423⟩
Algebra Number Theory 14, no. 6 (2020), 1423-1456
Algebra & Number Theory, 14 (6)
Algebra & Number Theory, Mathematical Sciences Publishers 2020, ⟨10.2140/ant.2020.14.1423⟩
Algebra & Number Theory, 2020, ⟨10.2140/ant.2020.14.1423⟩
Algebra Number Theory 14, no. 6 (2020), 1423-1456
Algebra & Number Theory, 14 (6)
International audience; We prove a uniform version of non-Archimedean Yomdin-Gromov parametrizations in a definable context with algebraic Skolem functions in the residue field. The parametrization result allows us to bound the number of F_q[t]-point
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c13d25f8fb15167d3f3cbc78edab2217
http://arxiv.org/abs/1902.06589
http://arxiv.org/abs/1902.06589
Autor:
Arthur Forey
Publikováno v:
Selecta Mathematica. 25
Let k be a field of characteristic zero containing all roots of unity and $$K=k(( t))$$ . We build a ring morphism from the Grothendieck ring of semi-algebraic sets over K to the Grothendieck ring of motives of rigid analytic varieties over K. It ext