Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Artem Kharakhashyan"'
Autor:
Artem Kharakhashyan, Olga Maltseva
Publikováno v:
Geodesy and Geodynamics, Vol 15, Iss 5, Pp 528-541 (2024)
The longitudinal dependence of the behavior of ionospheric parameters has been the subject of a number of works where significant variations are discovered. This also applies to the prediction of the ionospheric total electron content (TEC), which ne
Externí odkaz:
https://doaj.org/article/923488a3b4364093aef893c3cef22fe2
Publikováno v:
Geodesy and Geodynamics, Vol 13, Iss 6, Pp 544-553 (2022)
Despite the continuous improvement of the widely used empirical model international reference ionosphere (IRI), the recently appeared new models must be tested worldwide. Testing along the meridians has the advantage of dealing with the latitudinal d
Externí odkaz:
https://doaj.org/article/0527b08273ea4c6e8d06acdc449df21b
Autor:
Artem Kharakhashyan, Olga Maltseva
Publikováno v:
Remote Sensing, Vol 15, Iss 12, p 3069 (2023)
Machine learning can play a significant role in bringing new insights in GNSS remote sensing for ionosphere monitoring and modeling to service. In this paper, a set of multilayer architectures of neural networks is proposed and considered, including
Externí odkaz:
https://doaj.org/article/b8fa76b88952404483dee067e377c37c
Publikováno v:
Universe, Vol 7, Iss 9, p 342 (2021)
For a long time, the equivalent ionospheric slab thickness τ has remained in the shadow of ionospheric main parameters: the maximum density, NmF2 (or the critical frequency, foF2), and the total electron content. Empirical global models have been de
Externí odkaz:
https://doaj.org/article/a5a47f70efbe4c3c8a5285f26f161fa6
Autor:
Maltseva, Artem Kharakhashyan, Olga
Publikováno v:
Remote Sensing; Volume 15; Issue 12; Pages: 3069
Machine learning can play a significant role in bringing new insights in GNSS remote sensing for ionosphere monitoring and modeling to service. In this paper, a set of multilayer architectures of neural networks is proposed and considered, including
Autor:
Artem Kharakhashyan
Publikováno v:
Springer Proceedings in Materials ISBN: 9783031215711
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::16d6fbca4f9717de94bb964fe41d8f7b
https://doi.org/10.1007/978-3-031-21572-8_37
https://doi.org/10.1007/978-3-031-21572-8_37
Publikováno v:
2021 IEEE International Conference on Wireless for Space and Extreme Environments (WiSEE).