Zobrazeno 1 - 10
of 10
pro vyhledávání: '"Arsov, Nino"'
As machine learning black boxes are increasingly being deployed in real-world applications, there has been a growing interest in developing post hoc explanations that summarize the behaviors of these black boxes. However, existing algorithms for gene
Externí odkaz:
http://arxiv.org/abs/2011.06169
In the last decade, many diverse advances have occurred in the field of information extraction from data. Information extraction in its simplest form takes place in computing environments, where structured data can be extracted through a series of qu
Externí odkaz:
http://arxiv.org/abs/1911.11750
Autor:
Arsov, Nino, Mirceva, Georgina
Networks are one of the most powerful structures for modeling problems in the real world. Downstream machine learning tasks defined on networks have the potential to solve a variety of problems. With link prediction, for instance, one can predict whe
Externí odkaz:
http://arxiv.org/abs/1911.11726
Autor:
Arsov, Nino, Velinov, Goran, Dimovski, Aleksandar S., Koteska, Bojana, Sahpaski, Dragan, Kon-Popovska, Margina
The excessively increased volume of data in modern data management systems demands an improved system performance, frequently provided by data distribution, system scalability and performance optimization techniques. Optimized horizontal data partiti
Externí odkaz:
http://arxiv.org/abs/1911.11725
Decision trees and logistic regression are one of the most popular and well-known machine learning algorithms, frequently used to solve a variety of real-world problems. Stability of learning algorithms is a powerful tool to analyze their performance
Externí odkaz:
http://arxiv.org/abs/1903.00816
Stacking is a general approach for combining multiple models toward greater predictive accuracy. It has found various application across different domains, ensuing from its meta-learning nature. Our understanding, nevertheless, on how and why stackin
Externí odkaz:
http://arxiv.org/abs/1901.09134
Publikováno v:
In Blockchain: Research and Applications March 2023 4(1)
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.