Zobrazeno 1 - 3
of 3
pro vyhledávání: '"Arseny V Povolotsky"'
Autor:
Kael Dai, Juan Hernando, Yazan N Billeh, Sergey L Gratiy, Judit Planas, Andrew P Davison, Salvador Dura-Bernal, Padraig Gleeson, Adrien Devresse, Benjamin K Dichter, Michael Gevaert, James G King, Werner A H Van Geit, Arseny V Povolotsky, Eilif Muller, Jean-Denis Courcol, Anton Arkhipov
Publikováno v:
PLoS Computational Biology, Vol 16, Iss 2, p e1007696 (2020)
Increasing availability of comprehensive experimental datasets and of high-performance computing resources are driving rapid growth in scale, complexity, and biological realism of computational models in neuroscience. To support construction and simu
Externí odkaz:
https://doaj.org/article/96cd62f444274b59b61eee3ed7ac4d6c
Autor:
Kael Dai, Andrew P. Davison, Juan Hernando, Michael Gevaert, Adrien Devresse, Jean-Denis Courcol, Arseny V. Povolotsky, Padraig Gleeson, Eilif Muller, Yazan N. Billeh, Sergey L. Gratiy, Anton Arkhipov, Salvador Dura-Bernal, Judit Planas, Werner Van Geit
Publikováno v:
SSRN Electronic Journal.
Increasing availability of comprehensive experimental datasets in neuroscience and of high-performance computing resources are driving rapid growth in scale, complexity, and biological realism of computational network models. To support construction
Autor:
Salvador Dura-Bernal, Jean-Denis Courcol, Arseny V. Povolotsky, Michael Gevaert, Sergey L. Gratiy, Padraig Gleeson, James G. King, Anton Arkhipov, Adrien Devresse, Eilif Muller, Werner Van Geit, Benjamin Dichter, Juan Hernando, Judit Planas, Yazan N. Billeh, Kael Dai, Andrew P. Davison
Publikováno v:
PLoS Computational Biology, Vol 16, Iss 2, p e1007696 (2020)
PLOS Computational Biology
PLoS Computational Biology
PLoS Computational Biology, Public Library of Science, 2020, 16 (2), pp.e1007696. ⟨10.1371/journal.pcbi.1007696⟩
PLOS Computational Biology
PLoS Computational Biology
PLoS Computational Biology, Public Library of Science, 2020, 16 (2), pp.e1007696. ⟨10.1371/journal.pcbi.1007696⟩
Increasing availability of comprehensive experimental datasets and of high-performance computing resources are driving rapid growth in scale, complexity, and biological realism of computational models in neuroscience. To support construction and simu