Zobrazeno 1 - 10
of 57
pro vyhledávání: '"Arsénio, Diogo"'
The evolution of an electrically conducting imcompressible fluid with nonconstant density can be described by a set of equations combining the continuity, momentum and Maxwell's equations; altogether known as the inhomogeneous Navier--Stokes--Maxwell
Externí odkaz:
http://arxiv.org/abs/2403.18500
Autor:
Anwasia, Benjamin, Arsénio, Diogo
Publikováno v:
Communications in Mathematics, Volume 32 (2024), Issue 3 (Special issue: Portuguese Mathematics) (April 25, 2024) cm:12766
We show that a measurable function $g:\mathbb{S}^{d-1}\to\mathbb{R}$, with $d\geq 3$, satisfies the functional relation \begin{equation*} g(\omega)+g(\omega_*)=g(\omega')+g(\omega_*'), \end{equation*} for all admissible $\omega,\omega_*,\omega',\omeg
Externí odkaz:
http://arxiv.org/abs/2401.00433
Publikováno v:
Forum of Mathematics, Sigma 12 (2024) e79
This paper is devoted to the global analysis of the three-dimensional axisymmetric Navier--Stokes--Maxwell equations. More precisely, we are able to prove that, for large values of the speed of light $c\in (c_0, \infty)$, for some threshold $c_0>0$ d
Externí odkaz:
http://arxiv.org/abs/2309.12060
Autor:
Arsénio, Diogo, Houamed, Haroune
We are interested in the stability analysis of two-dimensional incompressible inviscid fluids. Specifically, we revisit a recent result on the stability of Yudovich's solutions to the incompressible Euler equations in $L^\infty([0,T];H^1)$ by providi
Externí odkaz:
http://arxiv.org/abs/2305.10148
Autor:
Arsénio, Diogo, Houamed, Haroune
Euler--Maxwell systems describe the dynamics of inviscid plasmas. In this work, we consider an incompressible two-dimensional version of such systems and prove the existence and uniqueness of global weak solutions, uniformly with respect to the speed
Externí odkaz:
http://arxiv.org/abs/2204.04277
Several well-studied online resource allocation problems can be formulated in terms of infinite, increasing sequences of positive values, in which each element is associated with a corresponding allocation value. Examples include problems such as onl
Externí odkaz:
http://arxiv.org/abs/2111.05281
Autor:
Arsénio, Diogo, Lerner, Nicolas
Publikováno v:
Pure Appl. Analysis 3 (2021) 319-362
This work introduces a new approach to velocity averaging lemmas in kinetic theory. This approach -- based upon the classical energy method -- provides a powerful duality principle in kinetic transport equations which allows for a natural extension o
Externí odkaz:
http://arxiv.org/abs/2006.16058
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Arsénio, Diogo, Gallagher, Isabelle
Large weak solutions to Navier--Stokes--Maxwell systems are not known to exist in their corresponding energy space in full generality. Here, we mainly focus on the three-dimensional setting of a classical incompressible Navier--Stokes--Maxwell system
Externí odkaz:
http://arxiv.org/abs/1811.01364
The vortex method is a common numerical and theoretical approach used to implement the motion of an ideal flow, in which the vorticity is approximated by a sum of point vortices, so that the Euler equations read as a system of ordinary differential e
Externí odkaz:
http://arxiv.org/abs/1707.07861