Zobrazeno 1 - 10
of 77
pro vyhledávání: '"Arone, Gregory"'
We prove a thick subcategory theorem for the category of $d$-excisive functors from finite spectra to spectra. This generalizes the Hopkins-Smith thick subcategory theorem (the $d=1$ case) and the $C_2$-equivariant thick subcategory theorem (the $d=2
Externí odkaz:
http://arxiv.org/abs/2402.04244
Autor:
Arone, Gregory, Sarcevic, Franjo
Publikováno v:
Homology Homotopy Appl. 26 (2024), no. 2, 163-192
For an integer $r\ge 2$, the space of $r$-immersions of $M$ in $\mathbb R^n$ is defined to be the space of immersions of $M$ in $\mathbb R^n$ such that at most $r-1$ points of $M$ are mapped to the same point in $\mathbb R^n$. The space of $r$-immers
Externí odkaz:
http://arxiv.org/abs/2301.03131
Autor:
Arone, Gregory, Sarcevic, Franjo
For a manifold $M$ and an integer $r>1$, the space of $r$-immersions of $M$ in $\mathbb R^n$ is defined to be the space of immersions of $M$ in $\mathbb R^n$ such that the preimage of every point in $\mathbb R^n$ contains fewer than $r$ points. We co
Externí odkaz:
http://arxiv.org/abs/2212.09809
Autor:
ARONE, GREGORY1 gregory.arone@math.su.se, ŠARČEVIĆ, FRANJO2 franjo.sarcevic@live.de
Publikováno v:
Homology, Homotopy & Applications. 2024, Vol. 26 Issue 2, p163-192. 30p.
Autor:
Arone, Gregory, Krushkal, Vyacheslav
Publikováno v:
Asian J. Math. 27 (2023), 135-186
Given a finite CW complex $K$, we use a version of the Goodwillie-Weiss tower to formulate an obstruction theory for embedding $K$ into a Euclidean space $\mathbb{R}^d$. For $2$-dimensional complexes in $\mathbb{R}^4$, a geometric analogue is also in
Externí odkaz:
http://arxiv.org/abs/2101.10995
In a companion paper [ABS1] we introduced the stable $\infty$-category of noncommutative CW-spectra, which we denoted $\mathtt{NSp}$. Let $\mathcal{M}$ denote the full spectrally enriched subcategory of $\mathtt{NSp}$ whose objects are the non-commut
Externí odkaz:
http://arxiv.org/abs/2101.09778
Motivated by the philosophy that $C^*$-algebras reflect noncommutative topology, we investigate the stable homotopy theory of the (opposite) category of $C^*$-algebras. We focus on $C^*$-algebras which are non-commutative CW-complexes in the sense of
Externí odkaz:
http://arxiv.org/abs/2101.09775
Autor:
Arone, Gregory Z., Lesh, Kathryn
Publikováno v:
Algebr. Geom. Topol. 22 (2022) 251-306
Suppose F is a special Gamma-space equipped with a natural transformation to the infinite symmetric power functor. Segal's infinite loop space machine associates with F a spectrum, denoted kF, equipped with a map to the integral Eilenberg-Mac Lane sp
Externí odkaz:
http://arxiv.org/abs/2003.09947
Autor:
Arone, Gregory, Szymik, Markus
Publikováno v:
Can. J. Math.-J. Can. Math. 74 (2022) 1-23
Suppose that $N_1$ and $N_2$ are closed smooth manifolds of dimension $n$ that are homeomorphic. We prove that the spaces of smooth knots $Emb(S^1, N_1)$ and $Emb(S^1, N_2)$ have the same homotopy $(2n-7)$-type. In the 4-dimensional case this means t
Externí odkaz:
http://arxiv.org/abs/1909.00978
Publikováno v:
SciPost Phys. 7, 019 (2019)
We extend the list of known band structure topologies to include a large family of hyperbolic nodal links and knots, occurring both in conventional Hermitian systems where their stability relies on discrete symmetries, and in the dissipative non-Herm
Externí odkaz:
http://arxiv.org/abs/1905.05858