Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Arnott, Max"'
We introduce the novel class $(E_\alpha)_{\alpha \in [-\infty,1)}$ of reverse map projection embeddings, each one defining a unique new method of encoding classical data into quantum states. Inspired by well-known map projections from the unit sphere
Externí odkaz:
http://arxiv.org/abs/2407.19906
Autor:
Arnott, Max, Laustsen, Niels Jakob
We show that for each of the following Banach spaces~$X$, the quotient algebra $\mathscr{B}(X)/\mathscr{I}$ has a unique algebra norm for every closed ideal $\mathscr{I}$ of $\mathscr{B}(X)\colon$ - $X= \bigl(\bigoplus_{n\in\N}\ell_2^n\bigr)_{c_0}$\q
Externí odkaz:
http://arxiv.org/abs/2308.11586
Autor:
Arnott, Max, Laustsen, Niels Jakob
Publikováno v:
In Journal of Functional Analysis 15 October 2024 287(8)
Autor:
Arnott, Max, Laustsen, Niels Jakob
We classify the closed ideals of bounded operators acting on the Banach spaces $\left(\bigoplus_{n \in \mathbb{N}} \ell_2^n\right)_{c_0} \oplus c_0(\Gamma)$ and $\left(\bigoplus_{n \in \mathbb{N}} \ell_2^n\right)_{\ell_1} \oplus \ell_1(\Gamma)$ for e
Externí odkaz:
http://arxiv.org/abs/2008.12211
Autor:
Arnott, Max
This thesis is comprised of four chapters. Chapter 1 consists of preliminary definitions and descriptions of the notation we will be using throughout. In Chapter 2, we ask the following question: `for a given Banach space $X$ and an arbitrary closed
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::662dbd35416e4d9fee554d9892ba8f31
https://doi.org/10.17635/lancaster/thesis/2015
https://doi.org/10.17635/lancaster/thesis/2015
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Arnott, Max1 (AUTHOR) m.arnott@lancaster.ac.uk, Laustsen, Niels Jakob1 (AUTHOR) n.laustsen@lancaster.ac.uk
Publikováno v:
Journal of Mathematical Analysis & Applications. Aug2021, Vol. 500 Issue 1, pN.PAG-N.PAG. 1p.